AIAA Science and Technology Forum and Exposition (SciTech 2015)

Near Field Pressure Measurement around Free Flight 69 Degree Swept Back Delta Wing Model

Atsushi Toyoda , Akihiro Sasoh , Takahiro Imaizumi , Takeshi Ooyama Department of Engineering, Nagoya University, Aichi, 464-8603, Japan

Masashi Kanamori , Takashi Aoyama Japan Aerospace Exploration Agency, Chofu, Tokyo, 182-8522, Japan

Change in sonic boom evaluation

AIAA 2015-1253

Pressure measurement meathods

• Accurate pressure measurement is critical for the sonic boom evaluation

Туре	Location	Pros	Cons
Flight Experiment	Far Field	 Real boom measurement Various flight condition	Uncontrolled environmentExtremely high cost
Wind Tunnel	Near Field	Controlled environmentPrecise attitude control	Measurements affected by • Boundary layer • Sting
CFD	Near Field	• Ideal condition	High computational costSensitive to grid quality
Aeroballistic Range	Near Field	 Quiescence ambient No model support (can directly measure pressure recovery) 	difficult attitude controlNon-reusable model

Demonstrate the aeroballistic range's capability of the direct pressure measurement around free flight model

Directly measure the pressure signature propagated from the free flight 69 degree swept back angle delta wing model

Aeroballistic range at Nagoya Univ.

Kissimmee, Florida

Measurements

AIAA 2015-1253

Experimental model

69 degree swept back angle delta wing model

Sabot

- Length: 51.5 mm
- Mass: 14.6 g
- Model length inside the sabot: 41.5 mm

Model Length: 105.2 mm Wing Span: 41.4 mm Fuselage: ϕ 6.5 mm Material: AL7075 Mass: 9.9 g

AIAA 2015-1253

Visualizations

Mach 1.69

 $\beta = 0.7$ deg.

Hadland Ultra 8 Frame rage: 28.5k frames /sec Exposure: 2 µs

Shimadzu HPV-1 Frame rate: 125k frames/sec. Exposure: 1 µs $\alpha = -0.4$ deg.

Measured near field pressure signatures

Mach #: 1.69

H/L = 1.41

Show great agreement

Slight disagreement due to yaw angle

AIAA 2015-1253

Schlieren image and pressure signature

CFD Simulation condition

Simulation

HexaGrid

FaSTAR (developed by JAXA)

- Euler equations
- HLLEW with second order MUSCL
- LU-SGS

Simulation was conducted

- with sting
- without sting
- at Mach 1.69

Computational grid is aligned with the propagating pressure wave

Pressure distribution

Shock wave on refined region captured pressure waves compared to the coarse region

AIAA 2015-1253

Extracted near field pressure signatures

Mach #: 1.69

H/L = 1.41

The existence of sting clearly affects the aft pressure wave

AIAA 2015-1253

Pressure signature comparison

- Overall pressure signature agreed well.
- CFD and EFD showed miner disagreement at peak over pressure and the rise time.
- CFD result is averaged with 1.9% body length. Averaged result showed better agreement with EFD result.

Summary

- 69 degree swept back angle delta wing model was successfully launched using aeroballistic range
 - The near field pressure without the effect of the sting was measured without any correction
- CFD simulation indicated the sting have a strong effect on pressure signature at the aft region
- Experimentally measured pressure signature and CFD extracted pressure signature showed great agreement with each other

Thank you for listening. Questions ?

Simulation conditions

Simulation

HexaGrid

FaSTAR (developed by JAXA)

- Euler equations
- HLLEW with second order MUSCL
- LU-SGS

Simulation was conducted

- with sting
- without sting
- at Mach 1.69

Model is rotated to align the propagating pressure wave with the grid

