Sonic boom benchmark cases validation with FASIP

Jiaye Gan, Gecheng Zha
Dept. of Mechanical and Aerospace Engineering
University of Miami
Coral Gables, Florida 33124
E-mail: gzha@miami.edu

Introduction

- Low boom airplane design
- CFD tools for sonic boom prediction: Cart3d, Fun3d, CFL3d, SU2 and so on
- FASIP for SBiDir-FW desgin
- Assess FASIP code in the prediction of near-field pressure signatures

Summary of cases analyzed

- NASA cone model 1
- SEEB-ALR Body of Revolution
- 69 degree Delta Wing Body

Numerical Strategies

- Euler's equations
- Low Diffusion E-CUSP (LDE) Scheme as an accurate Riemann solver
- The MUSCL, 3rd and 5th Order WENO scheme for the inviscid flux
- High scalability parallel computation*
*Wang et al, Journal of Aerospace Computing, Information, and Communication, V.5, pp.425-447

Euler's Equations in Generalized Coordinates(ξ, η, ζ)

$$
\frac{\partial \mathbf{Q}}{\partial t}+\frac{\partial \mathbf{E}}{\partial \xi}+\frac{\partial \mathbf{F}}{\partial \eta}+\frac{\partial \mathbf{G}}{\partial \zeta}=0
$$

where

$$
\mathbf{E}=\left(\begin{array}{c}
\bar{\rho} U \\
\bar{\rho} \tilde{u} U+l_{x} \bar{p} \\
\bar{\rho} \tilde{v} U+l_{y} \bar{p} \\
\bar{\rho} \tilde{w} U+l_{z} \bar{p} \\
(\bar{\rho} \tilde{e}+\bar{p}) U-l_{t} \bar{p} \\
\bar{\rho} \tilde{\nu} U
\end{array}\right)
$$

$$
\begin{aligned}
& U=l_{t}+\mathbf{l} \bullet \mathbf{V}=l_{t}+l_{x} u+l_{y} v+l_{z} w \\
& V=m_{t}+\mathbf{m} \bullet \mathbf{V}=m_{t}+m_{x} u+m_{y} v+m_{z} w \\
& W=n_{t}+\mathbf{n} \bullet \mathbf{V}=n_{t}+n_{x} u+n_{y} v+n_{z} w
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{l}=\frac{\nabla \xi}{J} \mathrm{~d} \eta \mathrm{~d} \zeta, \mathbf{m}=\frac{\nabla \eta}{J} \mathrm{~d} \xi \mathrm{~d} \zeta, \mathbf{n}=\frac{\nabla \zeta}{J} \mathrm{~d} \xi \mathrm{~d} \eta \\
& l_{t}=\frac{\xi_{t}}{J} \mathrm{~d} \eta \mathrm{~d} \zeta, m_{t}=\frac{\eta_{t}}{J} \mathrm{~d} \xi \mathrm{~d} \zeta, n_{t}=\frac{\zeta_{t}}{J} \mathrm{~d} \xi \mathrm{~d} \eta
\end{aligned}
$$

$$
J=\frac{\partial(\xi, \eta, \zeta)}{\partial(x, y, z)}=\frac{1}{x_{\xi}\left(y_{\eta} z_{\zeta}-y_{\zeta} z_{\eta}\right)-x_{\eta}\left(y_{\xi} z_{\zeta}-y_{\zeta} z_{\xi}\right)+x_{\zeta}\left(y_{\xi} z_{\eta}-y_{\eta} z_{\xi}\right)}
$$

The Low Diffusion E-CUSP* (LDE) Scheme ${ }^{\dagger}$

- The basic idea of the LDE scheme is to split the inviscid flux into the convective flux E^{c} and the pressure flux E^{p}

$$
\mathbf{E}=E^{c}+E^{p}=\left(\begin{array}{c}
\rho U \\
\rho u U \\
\rho v U \\
\rho w U \\
\rho e U \\
\rho \tilde{\nu} U
\end{array}\right)+\left(\begin{array}{c}
0 \\
l_{x} p \\
l_{y} p \\
l_{z} p \\
p \bar{U} \\
0
\end{array}\right)
$$

- Ability to capture crisp shock and contact discontinuities
- Simpler and more CPU efficient than Roe scheme
*Convective Upwind and Split Pressure
${ }^{\dagger}$ G. Zha, A Low Diffusion Efficient Upwind Scheme, AIAA J. V.43, pp.1137-1140, 2005

NASA cone: Model 1

Sharp tip is replaced with a tiny semi-sphere
O-type mesh topology
Grid alignment with mach angle
Coarse mesh size: 1.72 million; Refined mesh size: 7.42 million

NASA cone *

*Extracted near field signatures at 2 body length below. Coarse mesh: 1.72 million; Refined mesh: 7.42 million

NASA cone *

*Extracted near field signatures with different schemes, left: 2 body below; right: 10 body below

NASA cone *

*Extracted near field signatures with different turbulent modeling

NASA cone *

Left: Baldwin-Lomax model; Middle: Spalart-Allmaras model; Right: Inviscid

*Mach number contours compared with different turbulent modeling method

SEEB-ALR Body of Revolution

Axisymmetric body designed by Lockheed Martin and features of a flattop signature
Free stream $\mathrm{M}=1.6$, Gama=1.4

O-type mesh topology; Grid alignment with mach angle
Coarse mesh size: $65 * 97 * 353=2225665$; Refined mesh size: $97 * 129 * 593=7420209$

SEEB-ALR *

*Extracted near field signatures at $h=21.2$ inches with different schemes, left: coarse mesh; right: refined mesh

SEEB-ALR *

Signatures at $h=21.2$ inches

*Mesh resolution comparisions with the 3rd-Weno schemes

SEEB-ALR *

*Countour plots, left: Mach line; right: pressure line

69° Delta Wing Body

- $M=1.7, G a m a=1.4$
- Angle of Attack(AoA): 0.0, 2.079, 3.588, 4.74
- Extracted near field at $\mathrm{H}=21.2,24.8,31.8$ inches below the model
- Geometry:

Mesh of Delta wing *

*Mesh regeneration: remove the singular node

Mesh of Delta wing *

*The grids near the body are regenerated. The external grids are the same as that of provoided by the workshop

Extracted signatures: $A 0 A=0.0, h=31.8$ inches $(h / I=4.6)$

*

*Curves are offset by 0.02 for each signal with phi larger than 0.0

Extracted signature comparisons with different AoA at $h=21.2$ inches $(h / l=3.07$)

Extracted signature comparisons with different AoA at $\mathrm{h} / \mathrm{I}=3.6$ ($\mathrm{h}=24.8$ inches)

Change of mesh topology on the wing surface

Comparison of the edges splitting:

- Splitting the leadging edge will double the mesh size away from the wing
- Splitting the edge connected to the body can keep the mesh size as the original mesh
- Coarse mesh: 12.21 million grid points with 174 blocks; Refined mesh: 24.04 million grid points with 313 blocks.

Extracted signature comparisons with different mesh sizes

$\mathrm{AoA}=0, \mathrm{~h}=31.6$ inches
Left: coarse mesh with 129*129 on the wing. Right: Refined mesh with $161 * 161$ on the wing

Mach contours varied with AoA in streamwise *

*Top left: $A o A=0.0 ;$ Top right: $A o A=2.079$; Bottom left: $A \circ A=3.588$; Bottom right: $A \circ A=4.74$

Pressure contours varied with AoA cross the wing

Isentropic mach number distribution around the body surface

Conclusion

- Near field pressure can be predicted well with Euler equations
- A inclined mesh matched the Mach cone angle is needed to predict the strength of the shock wave accurately
- Mesh refinement on the location of shock wave is needed to capture the shock wave accurately.

Thank you!

