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Introduction

• Low boom airplane design

- CFD tools for sonic boom prediction: Cart3d, Fun3d, CFL3d, SU2 and so on

- FASIP for SBiDir-FW desgin

• Assess FASIP code in the prediction of near-field pressure signatures
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Summary of cases analyzed

• NASA cone model 1

• SEEB-ALR Body of Revolution

• 69 degree Delta Wing Body
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Numerical Strategies

• Euler’s equations

• Low Diffusion E-CUSP (LDE) Scheme as an accurate

Riemann solver

• The MUSCL, 3rd and 5th Order WENO scheme for the

inviscid flux

• High scalability parallel computation∗

∗Wang et al, Journal of Aerospace Computing, Information, and Com-

munication, V.5, pp.425-447
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Euler’s Equations in Generalized Coordinates(ξ, η, ζ)
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U = lt + l • V = lt + lxu + lyv + lzw

V = mt + m • V = mt + mxu + myv + mzw

W = nt + n • V = nt + nxu + nyv + nzw
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The Low Diffusion E-CUSP∗ (LDE) Scheme†

• The basic idea of the LDE scheme is to split the inviscid

flux into the convective flux Ec and the pressure flux Ep

E = Ec + Ep =
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• Ability to capture crisp shock and contact discontinuities

• Simpler and more CPU efficient than Roe scheme

∗Convective Upwind and Split Pressure
†G. Zha, A Low Diffusion Efficient Upwind Scheme, AIAA J. V.43,

pp.1137-1140, 2005
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NASA cone: Model 1

201 x 141 x 61

Sharp tip is replaced with a tiny semi-sphere
O-type mesh topology
Grid alignment with mach angle
Coarse mesh size: 1.72 million; Refined mesh size: 7.42 million
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NASA cone ∗

x/L
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Results of Wintzer et al.

NASA-Cone: Mode1
M=2.01
Inviscid

P
/P

∗Extracted near field signatures at 2 body length below.
Coarse mesh: 1.72 million; Refined mesh: 7.42 million
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NASA cone ∗

x/L
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h/L=10.0

∗Extracted near field signatures with different schemes, left: 2 body
below; right: 10 body below
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NASA cone ∗
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∗Extracted near field signatures with different turbulent modeling
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NASA cone ∗

Left: Baldwin-Lomax model; Middle: Spalart-Allmaras model; Right: Inviscid

∗Mach number contours compared with different turbulent modeling
method
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SEEB-ALR Body of Revolution

Axisymmetric body designed by Lockheed Martin and features of a flat-
top signature
Free stream M=1.6, Gama=1.4

Y X

Z

Tip block topology

O-type mesh topology; Grid alignment with mach angle
Coarse mesh size: 65*97*353=2225665; Refined mesh size: 97*129*593=7420209
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SEEB-ALR ∗
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∗Extracted near field signatures at h=21.2 inches with different
schemes, left: coarse mesh; right: refined mesh
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SEEB-ALR ∗

Signatures at h=21.2 inches
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∗Mesh resolution comparisions with the 3rd-Weno schemes
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SEEB-ALR ∗

∗Countour plots, left: Mach line; right: pressure line
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69o Delta Wing Body

• M=1.7, Gama=1.4
• Angle of Attack(AoA): 0.0, 2.079, 3.588, 4.74
• Extracted near field at H=21.2, 24.8, 31.8 inches below the model
• Geometry:
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Mesh of Delta wing ∗
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∗Mesh regeneration: remove the singular node
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Mesh of Delta wing ∗
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∗The grids near the body are regenerated. The external grids are the
same as that of provoided by the workshop
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Extracted signatures: AoA=0.0, h=31.8 inches(h/l=4.6)
∗
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∗Curves are offset by 0.02 for each signal with phi larger than 0.0
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Extracted signature comparisons with different AoA

at h=21.2 inches(h/l=3.07)
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Extracted signature comparisons with different AoA

at h/l=3.6(h=24.8 inches)

x/l

dp
/P

0.8 0.9 1 1.1 1.2
-0.03

-0.02

-0.01

0

0.01

0.02 h/l=3.6, phi=0.0
h/l=3.6, phi=30.0
h/l=3.6, phi=60.0
h/l=3.6, phi=90.0

AoA=0.0

x/l
dp

/P

0.8 0.9 1 1.1 1.2
-0.02

-0.01

0

0.01

0.02

0.03 h/l=3.6, phi=0.0
h/l=3.6, phi=30.0
h/l=3.6, phi=60.0
h/l=3.6, phi=90.0

AoA=2.079

x/l

dp
/P

0.8 0.9 1 1.1 1.2
-0.02

-0.01

0

0.01

0.02

0.03 h/l=3.6, phi=0.0
h/l=3.6, phi=30.0
h/l=3.6, phi=60.0
h/l=3.6, phi=90.0

AoA=3.588

x/l

dp
/P

0.8 0.9 1 1.1 1.2

-0.02

-0.01

0

0.01

0.02

0.03 h/l=3.6, phi=0.0
h/l=3.6, phi=30.0
h/l=3.6, phi=60.0
h/l=3.6, phi=90.0

AoA=4.74

22



Change of mesh topology on the wing surface

Comparison of the edges splitting:
- Splitting the leadging edge will double the mesh size away from the wing
- Splitting the edge connected to the body can keep the mesh size as the original
mesh
- Coarse mesh: 12.21 million grid points with 174 blocks; Refined mesh: 24.04 million
grid points with 313 blocks.

Mesh of Wing

Wing surface
Coarse: 129*129
Refined: 161*161
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Extracted signature comparisons with different mesh

sizes

AoA=0, h=31.6 inches

Left: coarse mesh with 129*129 on the wing. Right: Re-

fined mesh with 161*161 on the wing
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Mach contours varied with AoA in streamwise ∗

∗Top left: AoA=0.0; Top right: AoA=2.079; Bottom left:
AoA=3.588; Bottom right: AoA=4.74
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Pressure contours varied with AoA cross the wing
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Isentropic mach number distribution around the body

surface
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Conclusion

• Near field pressure can be predicted well with Euler equa-

tions

• A inclined mesh matched the Mach cone angle is needed

to predict the strength of the shock wave accurately

• Mesh refinement on the location of shock wave is needed

to capture the shock wave accurately.
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Thank you !
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