Unstructured Grids for Sonic Boom Analysis and Design

Richard L. Campbell NASA Langley Research Center

Sudheer N. Nayani Analytical Services & Materials, Inc

AIAA SciTech 2015 Conference Kissimmee, Florida January 5-9, 2015

Outline

- Background
- Description of methods
 - Cylindrical Outer Boundary (COB)
 - Boom Grid (BG)
 - Near-Field Target (NFTARG)
- Results
 - Parametric grid generation studies
 - Exploratory design cases
- Concluding remarks

Technology Challenge Goals

	Balanced Goals for Practical Civil Supersonic Aircraft (Technology Available)	N+1 Supersonic Business Class Aircraft (2015)	N+2 Small Supersonic Airliner (2020)	N+3 Efficient Multi-Mach Aircraft (Beyond 2030)		
	Design Goals					
	Cruise Speed	Mach 1.6-1.8	Mach 1.6-1.8	Mach 1.3-2.0		
	Range (n.mi.)	4000	4000	4000 - 5500		
	Payload (Passengers)	6 - 20	35 - 70	100 - 200		
	Environmental Goals					
	Sonic Boom	65 - 70 PLdB	85 PLdB (Revised)	65 - 70 PLdB Low Boom Flight 75 - 80 PLdB Overwater Flight		
	Airport Noise (cumulative below stage 4)	Meet with Margin	10 EPNdB	10 - 20 EPNdB		
	Cruise Emissions (Cruise Nox g/kg of fuel)	Equivalent to current Subsonic	< 10	< 5 & particulate and water vapor mitigation		
	Efficiency Goals					
	Fuel Efficiency (passenger miles per lb of fuel)	1.0	3.0	3.5 - 4.5		

NASA defined an initial set of design parameters and performance levels for practical supersonic airliners in the near, mid and far term time frames

•

 Systems Studies have been used to determine if these goals are valid and achievable

N+1 Business Class

N+2 Small Supersonic Airliner N+3 Efficient, Multi Mach Aircraft

http://www.aeronautics.nasa.gov/fap/2012-PRESENTATIONS/SUP_2012_508.pdf

Recent Sonic Boom Research Using CFD Analysis and Design

- Shaped Sonic Boom Demonstration (flight tests, 2005)
- Gulfstream Quiet Spike test program (flight tests, 2008)
- NASA Sonic Boom Workshop (2008)
- NRA N+2 Studies (CFD and WT tests, 2013)
 - Boeing
 - Lockheed
- AIAA 1st Sonic Boom Prediction Workshop (2014)
- NASA Sonic Boom Unstructured Grid Generation
 - Stretched: SSGRID, SSGN
 - Extrusion: MCAP, **BG**, INFLATE
 - Adaptive: FUN3D

Flow Chart of Sonic Boom Analysis and Design Process Using TetrUSS

- Configuration setup
 - **GRIDTOOL:** define surface curves and patches from IGES or other geometry definition formats
 - AUTOSRC: automatically locate and size line sources that control surface grid spacing based on aircraft component type
- Outer boundary setup
 - **COB:** define curves, patches and sources for cylindrical or rectangular outer boundary for robust BG extrusion process
- Core grid generation
 - VGRID: generate body-fitted tetrahedral core grid using advancing layer and advancing front methods

COB Cylindrical Outer Boundary

COB Rectangular Outer Boundary

- Extrude layers of prisms through faces on core grid outer boundary
- Split prisms into tetrahedral cells and merge with core grid
- Radial angle reference point for extrusion located close to configuration nose
- Vary height of reference point to focus grid at selected radial angles

- Flow solver **USM3D**
 - Solves RANS equations using a cell-centered, upwind scheme
 - SST turbulence model used for viscous cases
 - Minmod limiter used for solution stability for all cases
- Target Pressure Generation NFTARG
 - Ray-tracing method to link surface geometry to near-field target
 - Several options available for target specification
- Design module CDISC
 - Knowledge-based design to target pressure distribution
 - Prescribed flow/geometry sensitivity derivatives
 - Flow constraints automatically generate target pressures
 - Geometry constraints incorporate multidisciplinary influences

Configurations Used in Code Evaluation Studies

Body of revolution (SEEB) - Euler

Delta wing-body (DWB) - Euler

Summary of Parametric Grid Generation Studies - COB

<u>Parameter</u>	Configuration	<u>Range</u>	<u>Significant</u>
Core grid vertical location	DWB	center, low	yes
Axial spacing parameter	DWB	100 – 500	yes
Multi-zone axial spacing	DWB	3,4 zones	yes
Off-track enhancements	DWB 0 LM1021), 30, 60 deg 0, 50 deg	no no
Outer boundary shape	DWB	cyl, rec	yes

Symmetry Plane Grids for Different Core Grid Vertical Locations

Core grid centered at model nose

Core grid automatically positioned by COB

Effect of Core Grid Vertical Location on DWB Near-field Boom Signature

Effect of Axial Spacing Parameter (ASP) on DWB Near-Field Boom Signature

Effect of Axial Spacing Parameter (ASP) on DWB Near-Field Boom Signature

Effect of Multi-zone Spacing Option on DWB Near-Field Boom Signature

M = 1.7 H/L = 3.6 $\Phi = 0 deg$

Collar Grid Inflow Planes for Different Core Grid Outer Boundary Options

Cylindrical (COB)

Effect of Core Outer Boundary Shape on DWB Near-field Boom Signature

Summary of Parametric Grid Generation Studies - BG

Parameter	Configuration	<u>Range</u>	<u>Significant</u>
Cell stretching factor	DWB	0.25 – 2.00	yes
Outer boundary distance	DWB	0.0, 0.5	no
Alpha parameter	LM1021	-2, 0, 2 deg	yes

Effect of BG Stretching Factor (SF) on DWB Near-Field Boom Signature

M = 1.7 H/L = 3.6 $\Phi = 0 deg$

Maximum cell stretching = 50 * SF

Effect of BG Alpha Parameter on LM1021 Near-field Boom Signature

Recommendations for Generation of Sonic Boom Grids using COB and BG

• COB

- Automated vertical positioning of outer boundary
- Axial spacing = 1/300 of the body length
- Multi-zone option for better local resolution
- ROB option for on-track, COB if off-track is needed

• BG

- Collar grid radial extent = signature location
- Cell stretching factor = 1.0
- Alpha parameter = flow solver angle of attack

Core Grid Symmetry Planes for Baseline and Modified SEEB Geometry

Baseline

Modified

Core Grid Symmetry Planes for Baseline and Modified SEEB Geometry

Effect of Initial Uniform BG Layers on SEEB Near-field Boom Signature

NFTARG Ray-Tracing Approach to Sonic Boom Design with CDISC

- Step from grid points on fuselage keel line to signature location
- Use Mach number from nearest grid point to determine direction for next step
- Shift beginning of signature to match ray trace from first keel point

CDISC Design of SEEB to Near-Field Signature from LM1021 - Pressures

CDISC Design of SEEB to Near-Field Signature from LM1021 - Geometry

29

CDISC Design of LM1021 to Near-Field Signature from SEEB - Pressures

CDISC Design of LM1021 to Near-Field Signature from SEEB - Geometry

- COB and BG generally produced similar boom signatures across the range for parameters investigated
- Initial guidelines for COB and BG input parameters have been suggested
- CDISC with NFTARG was effective for designing to a target near-field boom signature
- Boom design requires 2-5x more flow iterations per design cycle than the traditional CDISC surface pressure design