

Computational and Experimental Study of Supersonic Nozzle Flow and Shock Interactions

Melissa Carter

NASA Langley Research Center Alaa Elmiligui NASA Langley Research Center Sudheer Nayani Analytical Services & Materials, Inc Ray Castner NASA Glenn Research Center Walter Bruce III University of Virginia Jacob Inskeep West Virginia University

53rd AIAA Aerospace Sciences Meeting and Exhibit Kissimmee, Florida 5-9 January, 2015

Outline

- Introduction
- Experimental Study
- Computational Study
- Results
- Summary

Introduction

- NASA High Speed Project is focusing on technologies to enable future civilian aircraft to fly efficiently with reduced sonic boom, engine and aircraft noise, and emissions.
- Improvement of both computational and experimental capabilities for design and analysis of low boom aircraft.
- How does the engine's plume affect the boom signature.
- The focus of this study is to assess capability of USM3D to accurately predict the shock / plume interaction

Outline

- Introduction
- Experimental Study
- Computational Study
- Results
- Summary

Experimental Study

- Wind tunnel test was conducted at the NASA Glenn Research Center 1-foot by 1-foot supersonic wind tunnel (GRC 1x1 SWT) to:
 - Study the interaction of a shock with an engine's plume
 - Collect data for CFD validation

Raymond Castner, Susan Cliff, Alaa Elmiligui, and Courtney Winski, "Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel."

1X1 Supersonic Wind Tunnel Test Section

Test Section is 12-inches by 12.2-inches by 53.25-inches long

Pressure Probes

Two static pressure probes were built, a 10-degree cone probe and a probe based on the design of Pinckney probe.

Pressure Probes

1x1 SWT Shock and Plume Interaction RUN 44 Empty Tunnel

Static pressure data collected with the Pinckney probe demonstrated an offset in $\Delta P/P$ of -0.08

Total of 8 configurations were tested:

- Empty Tunnel
- 1.5 inch wedge shock generator
- 6 inch wedge shock generator
- Jet and 1.5 inch wedge shock generator
- Jet and 6 inch wedge shock generator

Jet in GRC 1x1 SWT Test Section

Test section is 12-inches X 12.2-inches X 53.25-inches long

6 inch Wedge

Test section is 12-inches X 12.2-inches X 53.25-inches long

6 inch Wedge

Jet and 6 inch Wedge

Test section is 12-inches X 12.2-inches X 53.25-inches long

Jet and 1.5 inch Wedge

Test section is 12-inches X 12.2-inches X 53.25-inches long

1.5 inch Wedge

Wind Tunnel Flow Conditions

Reference Conditions

- Mach: 1.96
- Nominal Reynolds Number: 271,526
- Temperature: 168.9 K
- Pressure: 1.68 psia
- **Tunnel Inlet**
 - Stagnation Temperature: 298.3 K
 - Stagnation Pressure: 12.35 psia

Nozzle Inlet

- Stagnation Temperature: 294.4 K
- Stagnation Pressure
 - Po = 69.5, 92.7, 115.8, 139.0, 162.1 kPa
 - NPR = 6, 8, 10, 12, 14

Outline

- Introduction
- Experimental Study
- Computational Study
- Results
- Summary

A proven, stable, and reliable multi-platform system for unstructured Euler and Navier-Stokes CFD analysis

Geometry Setup GridTool

Grid Generation VGRID OpenGL

Flow Solver USM3D

Visualization SimpleView (Commercial Packages)

Tools & Utilities

• Complete flow analysis system

- Well developed infrastructure
- In-house experts
- Broad outside collaborations
- Design via. CDISC/SUSIE
- Workhorse system with large experience/confidence base

USM3D Tetrahedral Flow Solver

- Tetrahedral Cell-Centered, Finite Volume
- Euler and Navier-Stokes
- Time Integration
 - LTS and 2nd order time stepping
- Upwind Spatial Discretization
 - FDS, AUSM, HLLC, LDFSS, FVS
 - Min-mod limiter
- Standard and Special BC's
- Turbulence Models SA, SST, k-ε Sarkar Pressure Dilatation

Computational Grids

Test Section:

- 1. Empty test section
- 2. 6 inch wedge
- 3. 1.5 inch wedge
- 4. Jet & 6 inch wedge
- 5. Jet & 1.5 wedge

• Full Tunnel

Outline

- Introduction
- Experimental Study
- Computational Study
- Results
 - ➤ Mach = 1.96, Re = 271,526
 - ➤ Jet NPR = 6, 8, 10, 12, 14
- Summary

Jet in GRC 1x1 SWT Test Section

Mach = 1.96, NPR = 8, Re = 271,526

Grid size 37.4 million cells

Tunnel Shock Structure

Mach = 1.96, NPR = 8, Re = 271,526

Schlieren Image

Computed Density Gradient

Comparison of Computed Pressure Profiles and Experimental Data

24

6 inch Wedge

Mach = 1.96, NPR = 8, Re = 271,526

Grid Size 26.6 million cells

Jet in GRC 1x1 SWT Test Section

Mach = 1.96, NPR = 8, Re = 271,526

Grid Size 37.4 million cells

Jet and 6 inch Wedge

Mach = 1.96, NPR = 8, Re = 271,526

Grid Size 33.9 million cells

Predicted Pressure Signature of Jet Alone, Wedge Alone and Jet & Wedge

Mach = 1.96, NPR = 8, Re = 271,526

Pressure Signature for Jet and 6 inch Wedge

Mach = 1.96, NPR = 8, Re = 271,526

Tunnel Shock Structure for Jet and 6 inch Wedge

Mach = 1.96, NPR = 8, Re = 271,526

Schlieren Image

Computed Density Gradient

Computational Grid for 6 inch Wedge and Jet

Mach = 1.96, NPR = 8, Re = 271,526

Jet and 1.5 inch Wedge

Mach = 1.96, NPR = 8, Re = 271,526

Grid Size 52.3 million cells

Pressure Signature for Jet and 1.5 inch Wedge

Mach = 1.96, NPR = 8, Re = 271,526

Tunnel Shock Structure for Jet and 1.5 inch Wedge

Mach = 1.96, NPR = 8, Re = 271,526

Schlieren Image

Computed Density Gradient

Jet and 1.5 inch Wedge Modeled in GRC 1x1 SWT Wind Tunnel

Grid Size 52.6 million cells

Test section is 12-inches by 12.2-inches by 53.25-inches long

Pressure Signature for Jet and 1.5 inch Wedge

Tunnel Shock Structure for Jet and 1.5 inch Wedge, NPR = 8

Mach = 1.96, NPR = 8, Re = 271,526

Leading Edge Shock

Test Section Only

Full Tunnel Modeled

Summary

- Testing was completed in the GRC 1x1 SWT Wind Tunnel:
 - To study the interaction of a shock with an engine's plume
 - To collect data for CFD validation where a nozzle plume is passing through the shock generated from wedge
- USM3D was used to model the test section of the GRC 1x1 SWT with the jet and wedge installed.
 - Isolated nozzle
 - Isolated wedge (1.5 and 6 inch wedges)
 - Jet and wedge (1.5 and 6 inch wedges)
 - Mach = 1.96, Re = 271,526, NPR= 6, 8, 10, 12, 14
- Grid sourcing feature of VGRID provided USM3D with the capability to resolve the jet's plume shear layer and internal shock structure.

Summary

- Computational study only attempted to match experimental results from x=2 to approximately x=6.
- Overall reasonable agreement between CFD results and experimental data. CFD signature peaks being slightly higher.
- The computational study shows that engine plume flow affects the shock signature by moving it slightly forward and dampening the pressure peak of the shock.
- The wedge shock bends the jet plume flow upwards.
- Good qualitative agreement between Schlieren images and the computed density gradient.

Acknowledgment

- The research reported in this study was sponsored by the NASA Fundamental Aeronautics Program High Speed Project.
- High Fidelity Validation Team
 - Linda Bangert
 - Susan Cliff
 - Courtney Winski

Tunnel Shock Structure for Jet and 6 inch Wedge

Mach = 1.96, NPR = 8, Re = 271,526

Schlieren Image

Computed Density Gradient

Tunnel Shock Structure, NPR=8

Mach = 1.96, NPR = 8, Re = 271,526

Computed Density Gradient in All Three Direction

Computed Density Gradient in Two Directions