# Computational and Experimental Study of Supersonic Nozzle Flow and Shock Interactions 

Melissa Carter<br>NASA Langley Research Center Alaa Elmiligui<br>NASA Langley Research Center Sudheer Nayani<br>Analytical Services \& Materials, Inc

Ray Castner<br>NASA Glenn Research Center Walter Bruce III<br>University of Virginia Jacob Inskeep<br>West Virginia University

53rd AIAA Aerospace Sciences Meeting and Exhibit
Kissimmee, Florida
5-9 January, 2015

## Outline

- Introduction
- Experimental Study
- Computational Study
- Results
- Summary


## Introduction

- NASA High Speed Project is focusing on technologies to enable future civilian aircraft to fly efficiently with reduced sonic boom, engine and aircraft noise, and emissions.
- Improvement of both computational and experimental capabilities for design and analysis of low boom aircraft.
- How does the engine's plume affect the boom signature.
- The focus of this study is to assess capability of USM3D to accurately predict the shock / plume interaction


## Outline

- Introduction
- Experimental Study
- Computational Study
- Results
- Summary


## Experimental Study

- Wind tunnel test was conducted at the NASA Glenn Research Center 1 -foot by 1 -foot supersonic wind tunnel (GRC 1x1 SWT) to:
- Study the interaction of a shock with an engine's plume
- Collect data for CFD validation


Raymond Castner, Susan Cliff, Alaa Elmiligui, and Courtney Winski, "Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel."

## 1X1 Supersonic Wind Tunnel Test Section



Test Section is 12 -inches by 12.2 -inches by 53.25 -inches long

## Pressure Probes

Standard probe


Tangent cone
curve section


Two static pressure probes were built, a 10-degree cone probe and a probe based on the design of Pinckney probe.

## Pressure Probes

## 1x1 SWT Shock and Plume Interaction RUN 44 Empty Tunnel



Static pressure data collected with the Pinckney probe demonstrated an offset in $\Delta \mathrm{P} / \mathrm{P}$ of -0.08

## Configurations Tested in Wind Tunnel

Total of 8 configurations were tested:

- Empty Tunnel
- 1.5 inch wedge shock generator
- 6 inch wedge shock generator
- Jet and 1.5 inch wedge shock generator
- Jet and 6 inch wedge shock generator


## Jet in GRC 1x1 SWT Test Section



Test section is 12-inches X 12.2-inches X 53.25 -inches long Line extractions taken at 1 inch above nozzle centerline

## 6 inch Wedge



Test section is 12 -inches X 12.2-inches X 53.25 -inches long
Line extractions taken at 1 inch above nozzle centerline

## 6 inch Wedge

6 in.
$\uparrow 0.535 \mathrm{in}$.


## Jet and 6 inch Wedge


53.25-in.

Test section is 12-inches $X$ 12.2-inches $X 53.25$-inches long
Line extractions taken at 1 inch above nozzle centerline

## Jet and 1.5 inch Wedge


53.25-inches

Test section is 12-inches X 12.2-inches X 53.25 -inches long
Line extractions taken at 1 inch above nozzle centerline

## 1.5 inch Wedge

1.5 in.
$\downarrow 0.128 \mathrm{in}$.


## Wind Tunnel Flow Conditions

Reference Conditions

- Mach: 1.96
- Nominal Reynolds Number: 271,526
- Temperature: 168.9 K
- Pressure: 1.68 psia

Tunnel Inlet

- Stagnation Temperature: 298.3 K
- Stagnation Pressure: 12.35 psia

Nozzle Inlet

- Stagnation Temperature: 294.4 K
- Stagnation Pressure
- $\mathrm{Po}=69.5,92.7,115.8,139.0,162.1 \mathrm{kPa}$
- NPR = 6, 8, 10, 12, 14


## Outline

- Introduction
- Experimental Study
- Computational Study
- Results
- Summary


## TetrUSS Tetrahedral Unstructured Software System

A proven, stable, and reliable multi-platform system for unstructured Euler and Navier-Stokes CFD analysis


Geometry Setup
GridTool


Grid Generation VGRID OpenGL


- Complete flow analysis system
- Well developed infrastructure
- In-house experts
- Broad outside collaborations
- Design via. CDISC/SUSIE
- Workhorse system with large experience/confidence base


Visualization SimpleView (Commercial Packages)

## USM3D Tetrahedral Flow Solver

- Tetrahedral Cell-Centered, Finite Volume
- Euler and Navier-Stokes
- Time Integration
- LTS and $2^{\text {nd }}$ order time stepping
- Upwind Spatial Discretization
- FDS, AUSM, HLLC, LDFSS, FVS
- Min-mod limiter
- Standard and Special BC's
- Turbulence Models SA, SST, k- $\varepsilon$ Sarkar Pressure Dilatation


## Computational Grids



## Outline

- Introduction
- Experimental Study
- Computational Study
- Results
$>$ Mach $=1.96, \quad R e=271,526$
$>$ Jet NPR = 6, 8, 10, 12, 14
- Summary


## Jet in GRC 1x1 SWT Test Section

$$
\text { Mach }=1.96, \text { NPR }=8, \operatorname{Re}=271,526
$$



Grid size 37.4 million cells
Line extractions taken at 1 inch above nozzle centerline

## Tunnel Shock Structure

$$
\text { Mach }=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526
$$



## Schlieren Image

## Computed Density Gradient

# Comparison of Computed Pressure Profiles and Experimental Data 



## 6 inch Wedge

$$
\text { Mach }=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526
$$


53.25-inches

## Grid Size 26.6 million cells

Line extractions taken at 1 inch above nozzle centerline

## Jet in GRC 1x1 SWT Test Section

$$
\text { Mach }=1.96, \text { NPR }=8, \operatorname{Re}=271,526
$$



Grid Size 37.4 million cells
Line extractions taken at 1 inch above nozzle centerline

## Jet and 6 inch Wedge

$$
\text { Mach }=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526
$$


53.25-in.

Grid Size 33.9 million cells
Line extractions taken at 1 inch above nozzle centerline

# Predicted Pressure Signature of Jet Alone, Wedge Alone and Jet \& Wedge 

Mach $=1.96, N P R=8, R e=271,526$


# Pressure Signature for Jet and 6 inch Wedge 

Mach $=1.96, N P R=8, \operatorname{Re}=271,526$


## Tunnel Shock Structure for Jet and 6 inch Wedge

$$
\text { Mach }=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526
$$



Schlieren Image

Computed Density Gradient

## Computational Grid for 6 inch Wedge and Jet

$$
\text { Mach }=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526
$$



## Jet and 1.5 inch Wedge

$$
\text { Mach }=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526
$$


53.25-in.

Grid Size 52.3 million cells
Line extractions taken at 1 inch above nozzle centerline

# Pressure Signature for Jet and 1.5 inch Wedge 

Mach $=1.96, N P R=8, R e=271,526$


## Tunnel Shock Structure for Jet and 1.5 inch Wedge

$$
\text { Mach }=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526
$$



Schlieren Image
Computed Density Gradient

# Jet and 1.5 inch Wedge Modeled in GRC 1x1 SWT Wind Tunnel 

$$
\text { Mach }=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526
$$

## Top view

Side view
Flow Direction 98.78 in.

Grid Size 52.6 million cells
Test section is 12 -inches by 12.2 -inches by 53.25 -inches long

## Pressure Signature for Jet and 1.5 inch Wedge



## Tunnel Shock Structure for Jet and 1.5 inch Wedge, NPR = 8

Mach $=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526$


Leading Edge Shock
Test Section Only
Full Tunnel Modeled

## Summary

- Testing was completed in the GRC $1 \times 1$ SWT Wind Tunnel:
- To study the interaction of a shock with an engine's plume
- To collect data for CFD validation where a nozzle plume is passing through the shock generated from wedge
- USM3D was used to model the test section of the GRC $1 \times 1$ SWT with the jet and wedge installed.
- Isolated nozzle
- Isolated wedge ( 1.5 and 6 inch wedges)
- Jet and wedge ( 1.5 and 6 inch wedges)
- Mach = 1.96, $R e=271,526, N P R=6,8,10,12,14$
- Grid sourcing feature of VGRID provided USM3D with the capability to resolve the jet's plume shear layer and internal shock structure.


## Summary

- Computational study only attempted to match experimental results from $\mathrm{x}=2$ to approximately $\mathrm{x}=6$.
- Overall reasonable agreement between CFD results and experimental data. CFD signature peaks being slightly higher.
- The computational study shows that engine plume flow affects the shock signature by moving it slightly forward and dampening the pressure peak of the shock.
- The wedge shock bends the jet plume flow upwards.
- Good qualitative agreement between Schlieren images and the computed density gradient.


## Acknowledgment

- The research reported in this study was sponsored by the NASA Fundamental Aeronautics Program High Speed Project.
- High Fidelity Validation Team
- Linda Bangert
- Susan Cliff
- Courtney Winski


## Questions?



## Tunnel Shock Structure for Jet and 6 inch Wedge

Mach $=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526$


Schlieren Image


Computed Density Gradient

## Tunnel Shock Structure, NPR=8

$$
\text { Mach }=1.96, \mathrm{NPR}=8, \operatorname{Re}=271,526
$$



Computed Density Gradient in All Three Direction


Computed Density Gradient in Two Directions

