AlAA SciTech 2020 5th January, 2020, Orlando, FL, USA

National Aeronautics and Space Administration

SBPW3: Propagation Workshop Results using sBOOM

Sriram K. Rallabhandi

Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681

Outline

NASA

- Summary of Cases Analyzed
- Boom Propagation Code Details
- Cases
 - Ground Signatures
 - Loudness metrics
- Highlights
- Summary

Summary of Cases Analyzed

- NASA trimmed low-boom concept -C25P
 - Required runs with measured atmospheric profiles
 - -Lateral cut-off analysis
 - Optional focus boom simulations

Summary of Cases Analyzed

- NASA trimmed low-boom concept -C25P
 - Required runs with measured atmospheric profiles
 - -Lateral cut-off analysis
 - Optional focus boom simulations

- NASA-Lockheed Low-Boom Flight Demonstrator (LBFD): A variant of X-59 QueSST
 - Required runs with measured and standard atmospheres

Propagation Prediction Code: sBOOM

sBOOM

Propagation based on lossy Quasi-1D Burgers equation

$$\frac{\partial p}{\partial \sigma} = \frac{\frac{\partial B}{\partial \sigma}}{B} p + \frac{\beta \Omega}{2\rho_0 c_0^3} \left(\frac{c_0}{v_g}\right) \frac{\partial p^2}{\partial \tau} + \frac{\delta \Omega^2}{2\rho_0 c_0^3} \left(\frac{c_0}{v_g}\right) \frac{\partial^2 p}{\partial \tau^2} + \sum_{\nu} \frac{m_{\nu}}{2c_0} \frac{t_{\nu} \Omega^2}{1 + t_{\nu} \Omega \frac{\partial}{\partial \tau}} \left(\frac{c_0}{v_g}\right) \frac{\partial^2 p}{\partial \tau^2}$$
$$B = \sqrt{\frac{\rho c S_0 D_0^2}{\rho_0 c_0 S D^2} \left(\frac{\frac{cv_{g0}}{D_0}}{\frac{c_0 v_g}{D}}\right)}, \ v_g = \left|c \cdot \bar{n} + \bar{w}\right|, D = 1 + \frac{\bar{w} \cdot \bar{n}}{c}, \ \Omega = \frac{1}{D}$$

Ray Path Equations:

$$\frac{dx}{dt} = \bar{w} + c^2 q D \qquad \qquad \frac{dq}{dt} = -\left[\frac{\nabla c}{cD} + \sum_{i=1}^3 q_i \nabla w_i\right] \qquad \qquad q = \frac{\bar{n}}{c + \bar{w} \cdot \bar{n}}$$

Propagation Prediction Code: sBOOM

sBOOM

Propagation based on lossy Quasi-1D Burgers equation

$$\frac{\partial p}{\partial \sigma} = \frac{\frac{\partial B}{\partial \sigma}}{B} p + \frac{\beta \Omega}{2\rho_0 c_0^3} \left(\frac{c_0}{v_g}\right) \frac{\partial p^2}{\partial \tau} + \frac{\delta \Omega^2}{2\rho_0 c_0^3} \left(\frac{c_0}{v_g}\right) \frac{\partial^2 p}{\partial \tau^2} + \sum_{\nu} \frac{m_{\nu}}{2c_0} \frac{t_{\nu} \Omega^2}{1 + t_{\nu} \Omega \frac{\partial}{\partial \tau}} \left(\frac{c_0}{v_g}\right) \frac{\partial^2 p}{\partial \tau^2}$$
$$B = \sqrt{\frac{\rho c S_0 D_0^2}{\rho_0 c_0 S D^2} \left(\frac{\frac{cv_{g0}}{D_0}}{\frac{c_0 v_g}{D}}\right)}, \ v_g = \left|c \cdot \bar{n} + \bar{w}\right|, \\ D = 1 + \frac{\bar{w} \cdot \bar{n}}{c}, \ \Omega = \frac{1}{D}$$

• Ray Path Equations:

$$\frac{dx}{dt} = \bar{w} + c^2 q D \qquad \qquad \frac{dq}{dt} = -\left[\frac{\nabla c}{cD} + \sum_{i=1}^3 q_i \nabla w_i\right]$$

- Features and capabilities
 - Under-track, off-track signatures with winds
 - Acceleration, turn-rates, climb-rates, maneuvers and focus predictions by interfacing with Lossy Nonlinear Tricomi Equation (LNTE)
 - Design friendly sensitivities and adjoint error estimates

sBOOM is under active development. Contact Sriram.Rallabhandi@nasa.gov to get a copy of sBOOM

4

Run Parameters

- All azimuthal angles run in parallel
- Computing platform:
 - OSX running macOS Mojave (10.14.6)
 - CPU: 2.5 GHz i7
 - RAM: 16GB, 1600 MHz DDR3
 - NASA Langley mid-range computing facility
 - Single node of SGI ICE Altix Cluster
- No pre-processing of near-field data
- Computational run times
 - Typical run times for edge-to-edge carpet predictions
 - ~30 seconds wall-time @ sampling frequency = 100 KHz (16 azimuths)
 - ~130 seconds wall-time @ sampling frequency = 200 KHz (16 azimuths)
- Sampling frequency determined by adjoint-error correction approach by continuously embedding uniformly refined grid
 - 100 KHz sufficient to resolve loudness BSEL to within 0.1 dB
 - 400 KHz sufficient to resolve loudness BSEL to within 0.02 dB

Case1: Ground Signatures

Case1: Loudness Metrics

Case2: Ground Signatures

Case2: Ground Signatures

Case2: Ground Signatures

9

Case2: Loudness Metrics

NASA

- $(M, \dot{M}, \ddot{M}) = (1.4121, 0.015681, 0.000359)$
- Diffraction boundary layer thickness (δ) = 682.45m

- $(M, \dot{M}, \ddot{M}) = (1.4121, 0.015681, 0.000359)$
- Diffraction boundary layer thickness (δ) = 682.45m

- $(M, \dot{M}, \ddot{M}) = (1.4121, 0.015681, 0.000359)$
- Diffraction boundary layer thickness (δ) = 682.45m

- $(M, \dot{M}, \ddot{M}) = (1.4121, 0.015681, 0.000359)$
- Diffraction boundary layer thickness (δ) = 682.45m

- $(M, \dot{M}, \ddot{M}) = (1.4121, 0.015681, 0.000359)$
- Diffraction boundary layer thickness (δ) = 682.45m

$$\begin{aligned} & \frac{\partial^2 P}{\partial \bar{z}^2} - \bar{z} \frac{\partial^2 P}{\partial \tau^2} + \frac{\mu}{2} \frac{\partial^2 P^2}{\partial \tau^2} + \left[\frac{\alpha}{\varepsilon^2} + \sum_{\nu} \frac{\theta_{\nu}/\varepsilon^2}{1 + \tau_{\nu}\partial/\partial \tau} \right] \frac{\partial^3 P}{\partial \tau^3} = 0 \end{aligned} \\ & \text{Lossy NTE Model Equation as developed by Joe Salamone for the NASA Scamp Project} \\ & \mu = 2\beta \frac{P_{ac}}{\rho_0 c_0^2} \left(\frac{R_{tot} f_{ac}}{2c_0} \right)^{2/3} \quad \varepsilon = \left(\frac{2c_0}{R_{tot} f_{ac}} \right)^{2/3} \qquad R_{tot} \approx R_{cau} = \frac{2\delta^3 f_{ac}^2}{c_0^2} \end{aligned}$$

Highlights

- Lossy vs Lossless propagation
- Signature Evolution
- Modeling Non-linearity
- Loudness build-ups
- Loudness Gradients

Acoustic Potential formulation vs Poisson Implementation

"Numerical Simulation of Shock Wave Focusing at Fold Caustics, with application to Sonic Boom", Marchiano, R., Coulouvrat, F., Grenon, R., JASA, 114, 1758 (2003), dol: 10.1121/1.1610459

NASA

Highlights: Modeling Wind

- Based on provided data, there is a large tailwind at the cruise altitude •
 - Tailwind accounts for almost 10% of the speed of sound •

Highlights: Modeling Wind

- NASA
- Based on provided data, there is a large tailwind at the cruise altitude
 - Tailwind accounts for almost 10% of the speed of sound

19

Highlights: Loudness Build-up

Highlights: Loudness Build-up

Summary

- Near-field waveforms propagated using sBOOM
- Lateral cut-off azimuths using standard atmospheres are usually quite different from measured/realistic atmospheres
 - Lateral cut-off rays in realistic atmospheres can travel far
 - Could have low grazing angles
- Focus predictions show much higher loudness values than cruise booms (as expected)
- Different implementation of the underlying mechanisms seem to change the underlying characteristics of the ground signatures
 - Poisson vs. Acoustic Potential solutions
 - Wind considerations
 - As loudness levels get lower, there is potential for numerical noise to increase
- Loudness build-up plots can localize the loudness dominating portions of the signatures
- Loudness gradients provide a snapshot to allow optimization of the OML

Summary

- Near-field waveforms propagated using sBOOM
- Lateral cut-off azimuths using standard atmospheres are usually quite different from measured/realistic atmospheres
 - Lateral cut-off rays in realistic atmospheres can travel far
 - Could have low grazing angles
- Focus predictions show much higher loudness values than cruise booms (as expected)
- Different implementation of the underlying mechanisms seem to change the underlying characteristics of the ground signatures
 - Poisson vs. Acoustic Potential solutions
 - Wind considerations
 - As loudness levels get lower, there is potential for numerical noise to
 - increase
- Loudness build-up plots can localize the loudness dominating portions of the signatures
- Loudness gradients provide a snapshot to allow optimization of the OML

Acknowledgments

NASA

- NASA Commercial Supersonic Technology (CST) Project
- Boom prediction workshop organizing committee

Thank You! – Any Questions?