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• NASA trimmed low-boom concept - 
C25P 

– Required runs with measured 
atmospheric profiles 

– Lateral cut-off analysis 
– Optional focus boom simulations

• NASA-Lockheed Low-Boom Flight 
Demonstrator (LBFD): A variant of X-59 
QueSST 

• Required runs with measured and 
standard atmospheres
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sBOOM 
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sBOOM 
• Propagation based on lossy Quasi-1D Burgers equation 

Propagation Prediction Code: sBOOM

sBOOM is under active development. Contact Sriram.Rallabhandi@nasa.gov to get a copy of  sBOOM

• Features and capabilities 
• Under-track, off-track signatures with 

winds 
• Acceleration, turn-rates, climb-rates, 

maneuvers and focus predictions by 
interfacing with Lossy Nonlinear 
Tricomi Equation (LNTE) 

• Design friendly sensitivities and 
adjoint error estimates 
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Run Parameters
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• All azimuthal angles run in parallel 
• Computing platform:  

• OSX running macOS Mojave (10.14.6) 
• CPU: 2.5 GHz i7 
• RAM: 16GB, 1600 MHz DDR3  

• NASA Langley mid-range computing facility 
• Single node of SGI ICE Altix Cluster 

• No pre-processing of near-field data 
• Computational run times 

• Typical run times for edge-to-edge carpet predictions 
• ~30 seconds wall-time @ sampling frequency = 100 KHz (16 azimuths) 
• ~130 seconds wall-time @ sampling frequency = 200 KHz (16 azimuths) 

• Sampling frequency determined by adjoint-error correction approach by 
continuously embedding uniformly refined grid 

• 100 KHz sufficient to resolve loudness BSEL to within 0.1 dB 
• 400 KHz sufficient to resolve loudness BSEL to within 0.02 dB 
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Case1: Ground Signatures

5 January 2020



SBPW3: sBOOM results 7

Case1: Loudness Metrics

5 January 2020



SBPW3: sBOOM results 8

Case2: Ground Signatures
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Measured Atmosphere
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Case2: Ground Signatures

5 January 2020

Standard Atmosphere

For the measured atmosphere, 
carpet widths are larger by:  

• 28.17 nm on +ve side 
• 14.03 nm on –ve side
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Case2: Loudness Metrics
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•  = (1.4121, 0.015681, 0.000359) 
• Diffraction boundary layer thickness (𝜹) = 682.45m 
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Case1: Optional Focus Analysis
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Case1: Optional Focus Analysis
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Zbar=0.0: PL = 97.8 dB

Zbar=0.05: PL = 106.8 dB

Zbar=1.0: PL = 101.0 dB
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Case1: Optional Focus Analysis

5 January 2020
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• Lossy vs Lossless propagation 
• Signature Evolution 
• Modeling Non-linearity 
• Loudness build-ups 
• Loudness Gradients 

Highlights
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Highlights: Lossless vs Lossy
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Highlights: Lossless vs Lossy
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Phi = 00Phi = -400Phi = 400

Losses account for significant (~10-12 
dB) reduction in loudness metrics
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Highlights: Signature Evolution
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Scaling factor: 
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Highlights: Signature Evolution

5 January 2020

Scaling factor: 
1
𝑃

Vertical Distance from Cruise Altitude
Aircraft Length

Under-track

Near-field character 
maintained over long 

distances
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Highlights: Modeling Non-linearity
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Acoustic Potential formulation vs Poisson Implementation

“Numerical Simulation of Shock Wave Focusing at Fold Caustics, with application to Sonic Boom”, Marchiano, R., 
Coulouvrat, F., Grenon, R., JASA, 114, 1758 (2003), doI: 10.1121/1.1610459
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Highlights: Modeling Non-linearity
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Acoustic Potential formulation vs Poisson Implementation

“Numerical Simulation of Shock Wave Focusing at Fold Caustics, with application to Sonic Boom”, Marchiano, R., 
Coulouvrat, F., Grenon, R., JASA, 114, 1758 (2003), doI: 10.1121/1.1610459

Standard Atmosphere

As loudness levels get lower, significant impact of 
numerical implementation under windy conditions
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Highlights: Modeling Wind
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• Based on provided data, there is a large tailwind at the cruise altitude 
• Tailwind accounts for almost 10% of the speed of sound
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Highlights: Modeling Wind
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• Based on provided data, there is a large tailwind at the cruise altitude 
• Tailwind accounts for almost 10% of the speed of sound

Significant potential 
for input error
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Highlights: Loudness Build-up
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Highlights: Loudness Build-up
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Loudness build-up plots 
show dominant portion to 
go after for OML shaping
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Highlights: Loudness Gradients
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Highlights: Loudness Gradients
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Highlights: Loudness Gradients
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Highlights: Loudness Gradients
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Adjoint gradients provide a 
snapshot of what portions of the 

near-field are important to 
minimize boom carpet loudness
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Summary
• Near-field waveforms propagated using sBOOM 
• Lateral cut-off azimuths using standard atmospheres are usually quite different 

from measured/realistic atmospheres 
• Lateral cut-off rays in realistic atmospheres can travel far 
• Could have low grazing angles 

• Focus predictions show much higher loudness values than cruise booms (as 
expected) 

• Different implementation of the underlying mechanisms seem to change the 
underlying characteristics of the ground signatures 

• Poisson vs. Acoustic Potential solutions 
• Wind considerations 
• As loudness levels get lower, there is potential for numerical noise to 

increase 
• Loudness build-up plots can localize the loudness dominating portions of the 

signatures 
• Loudness gradients provide a snapshot to allow optimization of the OML 
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