

SBPW3: OVERVIEW OF PROPAGATION WORKSHOP

Sriram K. Rallabhandi
NASA Langley Research Center

Outline

- Motivation and goals
- Boom Propagation Workshop
- Cases
- Notice of Intent
- C25P
- Optional Focus Cases
- C609
- Atmospheric profiles
- SBPW3 Wind and Azimuthal Angle Conventions
- Summary

Motivation and Goals

Motivation:

- Impartially compare propagated signatures from multiple teams/codes under standard and non-standard atmospheric conditions
- Understand the state of current boom prediction methods across the international sonic boom community
- Explore the effect of the atmosphere on the evolution of shaped sonic booms Goals/Objectives:
- Aid in supersonic aircraft noise certification process
- Verify analysis techniques within multiple codes across international teams
- Understand modeling gaps, if any
- Improve awareness of sonic boom physics at realistic atmospheric conditions particularly at lateral cut-offs

Boom Propagation Workshop

- Yesterday was about CFD (near-field) predictions
- The subject today is atmospheric propagation
- Assumption: The input pressure waveform is sufficiently far away from the aircraft so the 3D effects are fully resolved
- Asking participants to use their best practices to predict ground signatures and their corresponding loudness values and ground intersection locations:

Time (sec)

Figure Source: "Status of Certification Procedures for Quiet
Supersonic Flight", Robbie Cowart, AIAA AVIATION 2019, Dallas, TX

- Under realistic atmospheric conditions including winds, but ignoring atmospheric turbulence

Workshop Culture

- Adjectives such as good, bad, right, and wrong oversimplify issues and are avoided
- Concentrate on describing observed differences and communicate why things are different

Overview of Cases (0) - Notice of Intent

CASE 0: Axi-symmetric body of revolution

- Flow Conditions: $\mathrm{M}=1.6$, Altitude $=15760 \mathrm{~m}, \mathrm{R} / \mathrm{L}=3.0, \mathrm{~L}=32.92 \mathrm{~m}$
- Required Data/Runs: Predict sonic boom signatures at azimuthal angles of $45^{\circ}, 0^{\circ}$ and 45^{0} increments using the prescribed atmospheric profiles

Overview of Cases (0) - Notice of Intent

CASE 0: Axi-symmetric body of revolution

Case 1: NASA C25P

- A powered equivalent of the NASA C25D configuration that was used in SBPW2
- Flow Conditions: M=1.6, Altitude $=15760 \mathrm{~m}, \mathrm{R} / \mathrm{L}=3.0$, $\mathrm{L}=33.53 \mathrm{~m}$
- Near-field provided from -900 to 90° in 10° increments

Case 1 Runs

Required Data/Runs:

- Predict sonic boom signatures at azimuthal angles of -70° through 70° in 10° increments using the prescribed atmospheric profiles
- Determine lateral cut-off azimuthal angles, and ground intersection locations on both sides of the flight track
- Loudness metrics (PL, ASEL, BSEL, CSEL)

Optional Runs: Sonic Boom Focusing

Optional Runs: Sonic Boom Focusing

- Focus prediction for level acceleration
- Mach $=1.4121, \mathrm{dM} / \mathrm{dt}=0.015681, \mathrm{~d}^{2} \mathrm{M} / \mathrm{dt}^{2}=0.000359$
- Altitude $=13716 \mathrm{~m}$, Ground altitude $=58 \mathrm{~m}$
- Diffraction boundary layer thickness $=682.45 \mathrm{~m}$
- Determine focused signatures and associated loudness metrics at $\bar{Z}=-1.0$ (evanescent wave), $\bar{Z}=0.0$ (Focus location), $\bar{Z}=1.0$ (post-focus location)

Case 2: LBFD C609

- NASA-Lockheed Low-Boom Flight Demonstrator (LBFD): A Variant of X-59 QueSST
- Flow Conditions: $\mathrm{M}=1.4$, Altitude $=16459.2 \mathrm{~m}, \mathrm{R} / \mathrm{L}=$ 3.0, L = 27.43 m
- Near-field provided from -900 to 90° in 2^{0} increments

Case 2 Runs

Required data/runs:

- Use prescribed as well as standard atmosphere
- Ground signatures, lateral cut-off azimuthal angles, loudness metrics for azimuthal angles:
- From -60 to 60 in 10 degree increments (with 0 being under-track)
- From -70 to -60 in 2 degree increments
- From 60 to 70 in 2 degree increments
- Corresponding to the lateral cut-off on either side of the flight track

Atmospheric Profiles

- Profiles drawn from Climate Forecast System Reanalysis (CFSR) database
- Spatial resolution
- $0.5^{\circ} \times 0.5^{\circ}$ lat/long: Roughly 35 mile separation
- E.g. 3 points between Los Angeles and San Diego

- Temporal resolution
- Every 6 hours from 1979 to present
- 00:00, 06:00, 12:00, 18:00 UTC
- Vertical resolution
- Varies, 37 isobaric pressure levels
- 1000 mbar to 1 mbar

Case 1 Profile

Approach:

- Took all valid profiles at an arbitrarily chosen location over the past 5 years
- Filtered atmospheres that produce:
- A physically narrow/medium/wide east-heading carpet
- A low/medium/high PL east-heading carpet
- An angularly narrow/medium/wide east-heading carpet
- Picked atmospheric profile producing angularly widest carpet for Case 1

Case 2 Profile

- Chose atmospheric profile producing a physically wide carpet
- Primary reason was to predict and see propagation algorithmic differences at large cut-off angles

Atmosphere	-ve angle	+ve angle	-ve width	+ve width
Standard Atmosphere	-44.83	44.83	28150 m	-28150 m
Chosen Atmosphere	-64.05	70.6	80340 m	-54200 m

SBPW3 Wind Conventions

- In the workshop atmospheric profiles, X-WIND corresponds to u-wind and Y-WIND corresponds to v -wind
- We following the convention of Meteorological Vector Winds

Example: Consider air particles moving from the south west to the north east represented by the black arrow \nearrow

Meteorological Vector Winds

$0^{\circ} \quad$ Positive u-wind: air particles moving from west to east Positive v-wind: air particles moving from south to north

SBPW3 Azimuthal Angle Conventions

Assume aircraft is flying into the plane of the paper

Participants

- 12 separate submissions: P1 - P12

- Europe
- Japan
\square USA

Acknowledgments

- All Participants
- NASA Commercial Supersonic Technology (CST) project
- Boom prediction workshop organizing committee and participants
- Will Doebler for assisting in down-selecting atmospheric profiles

Agenda

7:15 am-8:00 am		Breakfast
8:00 am - 8:05 am	Introduction	Lori Ozoroski
8:05 am - 8:30 am	Overview	Sriram Rallabhandi
8:30 am - 9:00 am	NASAAmes	Wade Spurlock
9:00 am - 9:30 am	Dassault	Pierre-Elie Normand
9:30 am - 10:00 am	ONERA	Gerald Carrier
10:00 am - 10:30 am		Break
10:30 am - 11:00 am	NASA Langley	Sriram Rallabhandi
11:00 am - 11:30 am	Volpe	R. Downs \& J. Page
11:30 am - 12:00 pm	Penn State	Luke Wade
12:00 pm - 1:00 pm	Lunch Provided by AIAA included in the registration fee	
1:00 pm - 1:30 pm	NASA Langley	Joel Lonzaga
1:30 pm - 2:00 pm	JAXA	Masashi Kanamori
2:00 pm - 2:30 pm	Boeing	Hao Shen
2:30 pm - 3:00 pm		Break
3:00 pm - 3:30 pm	Boom Supersonic	Enrico Fabiano
3:30 pm - 4:00 pm	Lockheed Martin	John Morgenstern
4:00 pm - 4:30 pm	FAA	Sandy Liu
4:30 pm - 5:00 pm	Summary	S. Rallabhandi \& A. Loubeau
5:00 pm - 5:30 pm	Discussion	

Thank You! - Any Questions?

