FUN3D Fixed-Grid and Adapted-Grid Nearfield Submissions to the Third AIAA Sonic Boom Prediction Workshop

Mike Park Computational AeroSciences Branch NASA Langley Research Center Look down computational schlieren of C608

FUN3D 13.6 (Biedron et al., NASA TM-2019-220416)

- Node-based finite-volume solver for mixedelement grids
- Blended upwind and central difference
 - Roe and low-dissipation Roe flux functions
 - van Albada (with heuristic pressure switch) and Barth-Jespersen limiter
- Spalart-Allmaras (SA) turbulence model
- Implicit solution advancement scheme with approximate convective Jacobians and explicitly specified CFL ramping

Adapted grids

- Multiscale metric (Alauzet and Loseille, JCP 229(3), 2010)
- Hessian reconstructed from Mach with local scaling to control interpolation error of smooth and nonsmooth features

Adapted grids

- *refine* grid adaptation mechanics for volume, boundary layer, and surface grid
 - OpenCSM (AIAA 2013-0701)
 - EGADS (AIAA 2012-0683)
 - EGADSlite (AIAA 2018-1401)

Resources

- NASA Langley mid-range computing facility

 SGI ICE Altix Cluster
- FUN3D
 - 16 to 640 core jobs limited by number of free cores and queue sizes
 - Adapted grids O(100K) to O(10M)
 - Workshop-provided grids 0(1M) to 0(100M)
 - Few minutes to a few hours

Biconvex Cases

- Workshop-provided tetrahedral grids
 - SA nonlinear divergence on mixed-element grids where the model struct meets the Biconvex support
- Tetrahedral grids adapted to control Mach number interpolation error
- Reynolds number sensitivity on tetrahedral Biconvex grids
 - Experiment and 22% higher workshop values

Biconvex dp/pinf

Biconvex Computational Schlieren

Biconvex Retroreflective Background Oriented Schlieren (AIAA 2017-43)

Biconvex RBOS (with Inset CFD)

Biconvex Computational Schlieren

Biconvex FUN3D Workshop Grids

Biconvex FUN3D Workshop Grids

Biconvex FUN3D Workshop Grids

Biconvex FUN3D Adapted Grids

Biconvex FUN3D Adapted Grids

Biconvex FUN3D Adapted Grids

Biconvex FUN3D Reynolds Number

Biconvex FUN3D Workshop Iterative

Biconvex FUN3D Adapted Iterative

Biconvex FUN3D Workshop Continuity Residual

C608 Cases

- Workshop-provided mixed-element grids
 - Meanflow nonlinear divergence on tetrahedral grids
- Tetrahedral grids adapted to control Mach number interpolation error
 - Reduced sensitivity observed in Flux function and limiter study (not shown)
- Environmental Control System (ECS) and engine inlet alternate boundary conditions sensitivity
 - Specified Mach more robust (adapted grids)

C608 dp/pinf

C608 Computational Schlieren

C608 Computational Schlieren

Workshop Grid (89.5M)

Adapted Grid (55.6M)

Workshop Grid (89.5M)

Adapted Grid (55.6M)

Workshop Grid (89.5M)

Adapted Grid (55.6M)

C608 FUN3D Workshop Grid BCs

C608 FUN3D Workshop Iterative Convergence 10⁴ Density 50.2M Density 89.5M 10³ Density 162.9M SA 50.2M 10² SA 89.5M SA 162.9M **Residual Norm** 10⁻¹ Initialized with freestream externally and plenum 10⁰ boundary condition internally 10⁻² 10⁻³ Meanflow CFL=5 and SA CFL=20 10⁻⁴ 6000 8000 2000 4000 0

Iteration

C608 FUN3D Workshop Continuity Residual

Summary

- Automated grid adaptation applied to control Mach number interpolation error
- Biconvex showed grid sensitivity at the stingbody juncture in the fixed and adapted grids
- Biconvex grid sensitivity reduced with grid adaptation for shock generator and plume
- Computational schlieren is available to compare to Retroreflective Background-Oriented Schlieren

Summary

 Differences between fixed grid and adapted grid C608 aft-deck lip shock driven by nozzle and bypass flows

Acknowledgments

- Jan-Renee Carlson
- NASA Langley Mid-Level Compute Cluster

Commercial Supersonics Technology Project

 This work was partially supported by the Transformational Tools and Technologies (TTT) Project of the NASA Transformative Aeronautics Concepts Program (TACP)