3rd AIAA Sonic Boom Prediction Workshop

Nearfield Cases

January 4, 2020 Orlando, Florida

Amar Potturi Metacomp Technologies, Inc. Agoura Hills, California

CFD++ Solver

- Finite volume solver
- Unstructured framework
- RANS equations solved
- Air treated as a calorically perfect gas
- Turbulence models used in this study:
 - Realizable k-c
 - Cubic k-e
 - Spalart-Allmaras (SA) + RC + QCR
 - Menter's SST

Biconvex Shock-Plume Interaction Model

Cases Simulated

- 1. Three turbulence models tested: realizable k-e, cubic k-e, and SST models.
- 2. Mesh convergence study performed with each model and the provided "mixed" mesh family (coarse, medium, and fine).

Freestream Conditions

1. Fluid: air treated as a calorically perfect gas

Property	Value
Μ	1.6
Re (inch ⁻¹)	376850.0
T (Rankine)	374.0

Boundary Conditions

Boundary Conditions

Results

Convergence

- 1. SST: a decrease of 5-6 orders in magnitude of the residuals
- 2. Realizable and cubic k-c: a decrease of 4-5 orders in magnitude of the residuals

Shock Structure

© 2020 Metacomp Technologies

Grid Refinement - Cubic k-e

Grid Refinement - Realizable k-e

Grid Refinement - SST

Grid Refinement - Centerline X-Velocity

Turbulence Models Effects

C608 Low Boom Flight Demonstrator

Cases Simulated

- 1. Three turbulence models tested: Spalart-Allmaras (SA), SA+RC+QCR, and SST models.
- Mesh convergence study performed with each model and the provided "mixed" mesh family (Coarse040, Coarse050, Coarse064, Coarse080, Coarse100, and Coarse128).

Freestream Conditions

- 1. Fluid: air treated as a calorically perfect gas
- 2. U.S. Standard Atmosphere 1976 used for freestream specification

Property	Value		Property	Value
М	1.4		Tinf (K)	216.65
			PInf (Pa)	10008.75
Altitude (ft)	53200.0		UInf (m/s)	413.19

Boundary Conditions

- All walls treated as adiabatic viscous surfaces with solve-towall methodology
- As recommended in the guidelines, reservoir boundary conditions prescribed for engine plenum and bypass surfaces
- As recommended in the guidelines, back pressure boundary conditions imposed at the engine fan and environmental control system (ECS) faces

Results

Convergence

- SST: a decrease of 4-5
 orders in magnitude of
 the residuals
- SA and SA+RC+QCR: a decrease of 6-7orders in magnitude of the residuals

© 2020 Metacomp Technologies

Flow Pattern

© 2020 Metacomp Technologies SBPW 2020, Orlando, Florida

Grid Refinement - H/L = 3.0 and Phi = 0.0°

SST vs SA vs SA+RC+QCR

SST vs SA vs SA+RC+QCR

Conclusions

- 1. Simulated both test cases with CFD++
- 2. Grid convergence studies:
 - Not achieved for the biconvex shock-plume interaction problem with the provided mesh family
 - Achieved for the low-boom flight demonstrator experiment with the provided mesh family
- 3. Turbulence models effects studied:
 - Effect of turbulence models minimal on the biconvex shock-plume interaction problem
 - Effect more significant on the low-boom flight demonstrator experiment

Thank You

Backup Slides

Flow Patterns - Turbulence Models

Turbulence Models Effects

Centerline X-Velocity

SST vs SA vs SA+RC+QCR

