

Near Field Sonic Boom Predictions Using STAR-CCM+

3rd AIAA Sonic Boom Prediction Workshop Chris Nelson, Mario Castillo, and Oisin Tong Siemens Digital Industries Software

Unrestricted © Siemens 2019

Realize innovation.

Agenda:

Summary of cases Flow solver/computing platform Computational meshes Biconvex case results C608 case results Summary/conclusions

Summary of Cases

• Biconvex 9x7

- Three workshop-provided grids
 - biconvex-visc-mixed-157
 - biconvex-visc-mixed-128
 - biconvex-visc-mixed-100
- C608
 - Three workshop-provided grids
 - c608-visc-mixed-128.cgns
 - c608-visc-mixed-100.cgns
 - c608-visc-mixed-080.cgns

Flow Solver and Computing Platform

Flow Solver

- STAR-CCM+ v2020.1 (pre-release)
 - Flux scheme-
 - 2nd order in space (cell-centered)
 - Venkat limiter
 - Pre-conditioned Roe (Biconvex case)
 - AUSM+up (C608)
 - Mentor SST turbulence model
 - Ideal gas (Sutherland's Law)
 - "Expert Driver CFL" used for most cases
 - New "AutoCFL" tested as well (C608)

Computing Platform

- Various Siemens Linux clusters
- MPI for parallelization

Computational Meshes

- All cases run (so far) used workshop-provided meshes
 - Native STAR-CCM+ poly meshes under development
 - Application of new AMR algorithm also being investigated
 - Results to be included in paper for AVIATION 2020

Agenda:

Summary of cases Flow solver/computing platform Computational meshes **Biconvex case results** C608 case results Summary/conclusions

Convergence Criteria

- Residuals not a good indicator of convergence for this case
 - Limit cycle reached early on
 - Possibly due to non-native mesh topology (tets)
- Looked at convergence of drag and mass flow through the nozzle instead
 - Convergence obtained for all meshes
 - Drag appears to be converging with increased resolution
 - Mass flow very similar for all cases
- Note- initial runs with '128' and '100' resolution meshes used incorrect units. Meshes were rescaled and solutions continued

Pressure Contours

Major flowfield features very similar for all mesh resolutions

Unrestricted © Siemens 2019

SIEMENS

Pressure Contours- Nozzle Exit Region

- Differences in pressure contours most apparent in vicinity of nozzle exit
- Increasing resolution improves smoothness of results

'157' mesh

'1<u>00' mesh</u>

Unrestricted © Siemens 2019

Page 9

Near Field Pressure Signatures

- All three meshes produce similar results
- Finer resolution sharpens peaks
- Waves emanating from jet plume not seen at measurement locations (likely due to mesh resolution)

0.5

'100' mesh

0.75

1

x (m)

1.25

1.5

1.75

Unrestricted © Siemens 2019

-0.05F

-0.06[_____0.25

Page 10

Agenda:

Summary of cases Flow solver/computing platform Computational meshes Biconvex case results **C608 case results** Summary/conclusions

Convergence Criteria

- As with Biconvex case, C608 residuals reach limit cycle early
- Convergence assessed using other means:
 - Drag coefficient
 - Engine intake/exit mass flow imbalance
 - ECS intake/exit mass flow imbalance

Mass Imbalance- ECS System

Mass Imbalance- Engine

Drag Coefficient

Unrestricted © Siemens 2019

Page 12

Pressure Contours

Major flowfield features very similar for all mesh resolutions

Unrestricted © Siemens 2019

SIEMENS

Ingenuity for life

Numerical Shadowgraph

- Effects of mesh resolution more apparent
- Possible impact of cell topology changes

Unrestricted © Siemens 2019

AutoCFL vs. Expert Driver

- Both are algorithms for controlling solution advancement (e.g. CFL number, desired number of AMG cycles, solution under-relaxation factor)
- Final solutions very similar
- AutoCFL intended to replace Expert Driver
 - More stable
 - Less (or no) tweaking required to reach converged solution
 - With minimal adjustment, can usually obtain good solutions faster than with Expert Driver
- Current runs used deliberately conservative settings for AutoCFL
 - Increased target AMG cycles
 - No attempt made (yet) to optimize settings

Near Field Pressure Signatures

- Solutions similar for all meshes
- As expected, higher resolution yields sharper signal
- Waves much stronger above vehicle (as designed)
- Unlike Biconvex case, waves emanating from plume reach data collection region, but are low amplitude by comparison

-0.02

80

85

90

95

100

x(m)

105

110

115

120

Ingenuity for life

Unrestricted © Siemens 2019

Page 16

125

130

SIEMENS

Near Field Pressure Signatures

0.01 0.005

120 deg

180 deg

Unrestricted © Siemens 2019

Page 17

90 deg

Summary

Caveat: Drawing conclusions before seeing comparison data for a blind test is always risky

- Current solutions suggest that even the coarsest workshop meshes give reasonable results
- As expected, increasing mesh resolution sharpens waves and provides more detail in plume region
- Specific to STAR-CCM+: New AutoCFL algorithm (with conservative settings) takes longer to converge, but seems to provide improved stability of results compared to previous Expert Driver algorithm

Thank you.

Chris Nelson

Aerospace Applications Specialist

Chris.Nelson@siemens.com