Cartesian Mesh Simulations for the 3rd AIAA Sonic Boom Prediction Workshop

Wade M. Spurlock

Science and Technology Corp.
Computational Aerosciences Branch Moffett Field, CA 94035 wade.m.spurlock@nasa.gov

Michael J. Aftosmis

Computational Aerosciences Branch NASA Ames Research Center Moffett Field, CA 94035 michael.aftosmis@nasa.gov

Marian Nemec

Computational Aerosciences Branch
NASA Ames Research Center
Moffett Field, CA 94035
marian.nemec@nasa.gov

Outline

- Cases
- Biconvex - shock/plume interaction
- C608 - full aircraft geometry
- Flow solver \& computational resources
- Geometry \& grids
- Numerical convergence
- Results
- Challenges
- Conclusions

Biconvex

Wind tunnel model setup to examine shock/plume interaction

Conditions:

- $M_{\infty}=1.6$
- Power BC's at plenum
- $\frac{p_{t}}{p_{\infty}}=8.0, \frac{T_{t}}{T_{\infty}}=1.768$
- Extract pressure signal at radial location $r=15$ in (0.38 m)
- Model is approximately 22 in (0.56 m) long

C608

- Modified version of Low Boom Flight Demonstrator design iteration
- Full aircraft, complex geometry, multiple inflow/outflow BC's

Conditions:

- $M_{\infty}=1.4$, Altitude $h=53,200 f t$
- Power BC's at engine nozzle $p_{t} / p_{\infty}=10.0, T_{t} / T_{\infty}=7.0$
- Power BC's at bypass nozzle $p_{t} / p_{\infty}=2.4, T_{t} / T_{\infty}=2.0$
- Engine fan inlet $p_{b} / p_{\infty}=2.6$ (desired Mach 0.4 flow at engine fan face)
- Environmental Control System vent inlets $p_{b} / p_{\infty}=1.4$ (desired Mach 0.35 flow at ECS inlets)
- Extract pressure signal at radial location $r / L=3$
- Model is approximately 1080 in (27.43 m) long

Cart3D Software

- Flow solver: Cart3D v1.5.5.3
- Steady, inviscid Euler equation solver
- Second-order upwind method
- Domain decomposition, highly scalable
- Multigrid acceleration (4 MG levels)
- 5-stage RK scheme, van Leer limiter
- Automatic meshing
- Multilevel Cartesian mesh with embedded cut-cell boundaries
- Unstructured surface triangulation with component tagging
- Output-driven mesh refinement
- Discrete adjoint solution and local error estimate
- Several different adjoint functionals, including pressure signal Δp
- Computing platform
- NASA ARC Electra, 1 Skylake node (40 cores, Intel Xeon Gold 6148)
- Biconvex: 19.9 M cells, 40 min final flow solve, 32 min adaptive meshing ($x 3$ sim's)
- C608: 29.6 M cells, 60 min final flow solve, 53 min adaptive meshing ($x 19$ sim's)

Geometry

- Biconvex
- Created surface triangulation from STP and IGS files
- Diagonalized structured grid where possible
- Filled in planar and irregularly shaped areas with unstructured cells

Geometry

- Biconvex
- Created surface triangulation from STP and IGS files
- Diagonalized structured grid where possible
- Filled in planar and irregularly shaped areas with unstructured cells

Geometry

- Issues with leading edge and trailing edge at tip of airfoil
- Cleaned up geometry by projecting LE and TE onto plane of wing tip

Geometry

- C608
- Received unstructured surface triangulation from J. Jensen (NASA ARC)
- 494 k vertices, 987 k triangles

Volume Mesh

- Cartesian cut-cell volume mesh for inviscid flow solver
- Cart3D autoBoom - previous SBPW2 work
- Aligned with Mach angle (with tiny offset to avoid sonic glitch)
- Roll the model geometry for different off-track ϕ angles
- Separate simulation for each off-track ϕ on 1 node, can be run simultaneously
- Tested different cell aspect ratios in the propagation and spanwise directions
- Adjoint-driven mesh adaptation
- Line sensor at multiple body lengths away
- Objective function is integrated pressure $\Delta p / p_{\infty}$
- Final grid sizes for data submittal
- Biconvex: 4.5, 8.9, 19.9 million cells for coarse, medium, fine
- C608: 7.1, 14.2, 29.6 million cells for coarse, medium, fine

Volume Mesh

- Adjoint-driven mesh adaptation
- Line sensor at multiple body lengths away
- Objective function is weighted integral of $\Delta p / p_{\infty}$

Initial mesh

Mesh after adaptation (coarse mesh)

Numerical Convergence

- Biconvex
- 550, 600,700 iterations on coarse, medium, fine grids
- Submitted adapt cycles 05, 06, 07 (ran 2 more out to 09 to check)

Numerical Convergence

- Biconvex
- 550, 600,700 iterations on coarse, medium, fine grids
- Adapt cycles 05, 06, 07 (ran 2 more out to 09 to check)
functional

Numerical Convergence

- Biconvex
- 550, 600,700 iterations on coarse, medium, fine grids
- Solutions are well converged by adapt $05,06,07$ cycles
- Richardson extrapolation used for error estimate

Numerical Convergence

- C608
- $400,500,550$ iterations on coarse, medium, fine grids
- Submitted adapt cycles 03, 04, 05 (ran 1 more out to 06 to check)

Numerical Convergence

- C608
- 400, 500, 550 iterations on coarse, medium, fine grids
- Adapt cycles 03, 04, 05 (ran 1 more out to 06 to check)

Numerical Convergence

- C608
- $400,500,550$ iterations on coarse, medium, fine grids
- Solutions are well converged by adapt $03,04,05$ cycles
- Richardson extrapolation used for error estimate

Results: Biconvex

- Density contours

Results: Biconvex

- Density contours (zoomed in on plume-shock interaction region)

Results: Biconvex

- Pressure coefficient contours

Results: Biconvex

Results: C608

- Separate simulation run at off-track ϕ every 10° (19 total)
- Five line sensors at offsets of $\Delta \phi=[-4,-2,0,+2,+4]$
- Covers full half-cylinder $0 \leq \Phi \leq 180^{\circ}$ in increments of 2°

Results: C608

Results: C608

Results: C608

Results: C608

Challenges

- C608
- Getting outflow BC's to correct desired Mach number
- Adjusted the back pressure
- Engine inlet from suggested 2.6 to 2.75
- ECS inlets from suggested 1.4 to 2.70
- Consistent closeouts are challenging
- Plume/shock is difficult to capture
- Mesh coarsening farther back in plume can create spurious artifacts in pressure signal

Conclusions

- Complex geometry increases computational cost
- More features to resolve
- Must take pressure signal farther from body
- Adaptive meshing refines based on solution error and objective function
- Must routinely check for solution quality
- Numerical convergence and adjoint performance
- Grid sequencing with coarse, medium, fine grid pressure signal
- Comparison metrics for multiple off-track ϕ sim's: mass flow through inflow/outflow boundaries, force \& moment coefficients
- Richardson extrapolation shows highest uncertainty in aft portion of signal, which is particularly challenging with propulsion and plumes
- Inviscid simulation can effectively capture supersonic flow features of shocks, expansions, and coalescence

Acknowledgements

- James Jensen for workshop C608 geometry
- Melissa Carter and Mike Park for organizing the workshop and for their correspondence on the nearfield cases
- ARMD Commercial Supersonic Technology Project for supporting this work
- NASA Advanced Supercomputing Division for computational resources

Questions?

