# USM3D Simulations for Third Sonic Boom Prediction Workshop (SBPW-3)

Alaa Elmiligui, Mohagna Pandya, and Melissa Carter NASA Langley Research Center, Hampton VA 23681 Boris Diskin

National Institute of Aerospace, Hampton, VA 23666

and

Sudheer Nayani

Analytical Services & Materials, Inc., Hampton, VA 23666

3rd AIAA Sonic Boom Prediction Workshop, January 4-5, 2020 Orlando, Florida

# Outline

- > Objective
- > Workshop Test Cases
- Numerical Tools
- Numerical Results
- Concluding Remarks

# Objective

- Summarize USM3D contributions to the 3<sup>rd</sup> AIAA Sonic Boom Prediction Workshop (SBPW-3)
- > Introduce USM3D mixed-element code to supersonic community
- Compare results from two different methods to solve the nonlinear iterations within USM3D mixed-element code
- > Compare results from mixed-element and production versions of USM3D

## **Test Cases for 3rd Sonic Boom Prediction Workshop**



Axisymmetric Body of Revolution Biconvex 9x7 Shock-Plume Interaction Model C608 Low Boom Flight Demonstrator

# **Numerical Tools**

### Computational Fluid Dynamics Codes

### USM3D Production code (supports only tetrahedral grids)

Pandya, M. J., Frink, N. T., Abdol-Hamid, K. S., Samareh, J. A., Parlette, E. B., and Taft, J. R., "Enhancements to TetrUSS for NASA Constellation Program," Journal of Spacecraft and Rockets, Vol. 49, No. 4, 2012, pp. 617-631

 USM3D mixed-element code (supports any combination of tetrahedral, pyramidal, prismatic, and hexahedral grids)

Pandya, M. J., Diskin, B., Thomas, J. L., and Frink, N. T., "Assessment of USM3D Hierarchical Adaptive Nonlinear Iteration Method Preconditioners for Three-Dimensional Cases," AIAA Journal, Vol. 55, No. 10, 2017, pp 3409-3424

## > Propagation Tools

### sBOOM propagation code

Sriram K. Rallabhandi. "Advanced Sonic Boom Prediction Using the Augmented Burgers Equation", Journal of Aircraft, Vol. 48, No. 4 (2011), pp. 1245–1253

### Loudness code

Shepherd, K. P., and Sullivan, B. M., "A Loudness Calculation Procedure Applied to Shaped Sonic Booms," NASA Technical Paper 3134, 1991

## **USM3D Simulations for SBPW-3**

### USM3D Production Code

### **USM3D Mixed-Element Code**

Cell-centered, finite volume

Euler and Navier-Stokes equations

Upwind spatial discretization

FDS, AUSM, HLLC, LDFSS, FVS

LTS and 2nd-order time stepping

Integration with baseline solver technology

Tetrahedral grids

Min-mod limiter

Turbulence models SA-standard, kɛ, SST

Two different methods for nonlinear iterations

Combination of tetrahedral, pyramidal, prismatic, and hexahedral grids

Limiters (Barth-Jespersen, Venkat, van Leer, van Albada)

Turbulence Models SA-, standard and negative

# **USM3D Mixed-Element Code**

#### System of nonlinear equations, R(Q) = 0

#### Two different methods to solve for nonlinear iterations

- Preconditioner-Alone (PA)
- Hierarchical Adaptive Nonlinear Iteration(HANIM)

#### PA method

baseline technology with improved discretization and preconditioner

#### > HANIM

- significant improvements over PA in robustness and iterative convergence
- enhanced solver for the system of nonlinear equations
- provides two additional hierarchies around the preconditioner of PA
- CFL adaptation used as a comprehensive tool

# **PA Method**

- Baseline technology with improved discretization and preconditioner
  - first-order FDS scheme for mean flow approximate Jacobian
  - point- or line-implicit scheme for solving preconditoner equations
  - residual reduction targets for preconditioner



**PA Flowchart** 

# **Hierarchical Adaptive Nonlinear Iteration Method (HANIM)**



## **Numerical Results**

### **Test Conditions:**

- Inviscid test case
- ➢ Mach 1.6
- ➢ Angle of attack 0.0°
- Reference length 32.92 m
- Altitude 15760 m
- ➤ Temperature 216.6°K

| l |  |
|---|--|
|   |  |

|          | Grid<br>Level | Scale<br>Factor | Nodes<br>(millions) | Mixed-Element<br>(millions) | Tetrahedral<br>(millions) |
|----------|---------------|-----------------|---------------------|-----------------------------|---------------------------|
| Coarsest | Axi-5         | 2.56            | 0.65                | 1.38                        | 3.71                      |
|          | Axi-4         | 2.00            | 1.60                | 3.70                        | 9.24                      |
|          | Axi-3         | 1.60            | 5.08                | 12.31                       | 29.68                     |
|          | Axi-2         | 1.28            | 15.91               | 40.44                       | 93.75                     |
| Finest   | Axi-1         | 1.00            | 56.09               | 151.30                      | 332.14                    |



Mach-aligned collar grid

### Symmetry Plane



## Axisymmetric Body of Revolution Grid Convergence Mixed-Element USM3D-HANIM



### USM3D-(PA vs HANIM) on Finest Mixed-Element Grid



**USM3D-PA Mixed-Element and Tetrahedral Grids** 



### Mixed-Element and Production Versions of USM3D, Axi-2 Grid

 $M_{\infty} = 1.6$ ,  $\alpha = 0.0^{\circ}$ , H/L = 3, Inviscid Flow



18

## **Axisymmetric Body of Revolution** USM3D-(PA vs HANIM) Convergence History



### **Test Conditions:**

- ≻ Mach 1.6
- ≻Angle of attack 0.0°
- ≻ Temperature 374°R
- ≻ Unit Reynolds number 376,850 per in
- > Engine  $P_o/P_{\infty} = 8$
- Engine  $T_o/T_{\infty}$  = 1.768

|           | Grid<br>Level | Scale<br>Factor | Mixed-Element Grids<br>(millions) |       | Tetrahedral Grids<br>(millions) |       |
|-----------|---------------|-----------------|-----------------------------------|-------|---------------------------------|-------|
|           |               |                 | Nodes                             | Cells | Nodes                           | Cells |
| Coarsest> | Grid_3        | 1.57            | 0.85                              | 2.80  | 0.85                            | 4.8   |
|           | Grid_2        | 1.28            | 1.60                              | 6.00  | 1.60                            | 9.0   |
| Finest    | Grid_1        | 1.00            | 3.30                              | 14.60 | 3.30                            | 18.8  |

### Biconvex 9x7 Shock-Plume Interaction Model Symmetry Plane Grid\_3



Symmetry Plane

 $M_{\infty}$  = 1.6,  $\alpha$  = 0.0°, Re = 376,850 per in





#### Normalized Pressure Contours

**Density Gradient Contours** 

Symmetry Plane Density Gradient Contours

 $M_{\infty}$  = 1.6,  $\alpha$  = 0.0°, Re = 376,850 per in



Grid Convergence on Tetrahedral Grids USM3D-PA



25

Grid Convergence on Tetrahedral Grids USM3D-PA



26

Grid Convergence on Tetrahedral Grids USM3D-PA





USM3D-PA Solutions on Mixed-Element and Tetrahedral Grids

 $M_{\infty}$  = 1.6,  $\alpha$  = 0.0°, Re = 376,850 per in



Mixed-Element and Production Versions of USM3D on Tetrahedral Grid\_2



Near Field Pressure Signature,  $\phi = 0^{\circ}$ 

29

USM3D-(PA vs HANIM) Convergence History

iterations



30

**Test Conditions:** 

►Mach 1.4

> Angle of attack 2.15° built into the grids

➢Body length 1080 in

≻Temperature 389.9°R

Unit Reynolds Number 109,776 per inch

≻Altitude 53,200 ft





Environmental Control System (ECS) Intake face  $P/P_{\infty} = 1.4$  or Mach 0.35



|           | Grid<br>Level | Scale<br>Factor | Nodes<br>(millions) | Mixed-Element<br>(millions) | Tetrahedral<br>(millions) |
|-----------|---------------|-----------------|---------------------|-----------------------------|---------------------------|
| Coarsest> | C608-5        | 1.28            | 11.78               | 29.82                       | 68.49                     |
|           | C608-4        | 1               | 20.70               | 50.03                       | 121.01                    |
|           | C608-3        | 0.8             | 34.88               | 82.27                       | 204.71                    |
|           | C608-2        | 0.64            | 50.22               | 122.65                      | 295.28                    |
| Finest    | C608-1        | 0.5             | 89.46               | 220.53                      | 527.86                    |

### Symmetry Plane Inner Grid



### Schematic Symmetry Plane Grid



C608-5 grid

**Pressure Coefficient Contours** 

 $M_{\infty}$  = 1.6,  $\alpha$  = 2.15°, Re = 109,776 per in.





 $M_{\infty}$  = 1.6,  $\alpha$  = 2.15°, Re = 109,776 per in.



Pressure Coefficient Contours

Density Gradient Contours

Grid Convergence on Mixed-Element Grids USM3D-HANIM

 $M_{\infty}$  = 1.6,  $\alpha$  = 2.15°, H/L = 3, Re = 109,776 per in,  $\phi$  = 0°



### Grid Convergence on Mixed-Element Grids USM3D-HANIM

 $M_{\infty}$  = 1.6,  $\alpha$  = 2.15°, H/L = 3, Re = 109,776 per in



Carpet of Perceived Loudness Levels

### **C608 Low Boom Flight Demonstrator** Effect of ECS BC Type USM3D-HANIM C608-5

 $M_{\infty}$  = 1.6,  $\alpha$  = 2.15°, H/L = 3, Re = 109,776 per in,  $\phi$  = 0°



Effect of ECS BC Type USM3D-HANIM C608-5

 $M_{\infty}$  = 1.6,  $\alpha$  = 2.15°, H/L = 3, Re = 109,776 per in



### **C608 Low Boom Flight Demonstrator** USM3D-HANIM Solutions on Mixed-Element and Tetrahedral Grids

0.01 0.6 C608-4 Mixed-Element C608-4 Mixed-Element PLdB 77.45 C608-4 Tetrahedral PLdB 77.47 C608-4 Tetrahedral 0.008 0.5 0.006 0.4 0.3 0.004 (**Jsd**) 0.2 0.1 002  $dp/p_{\infty}$ 0 002 -0.1 -0.004 -0.2 -0.006 -0.3 -0.008 -0.01 🛏 3000 -0.4 50 100 150 3500 4000 4500 5000 Time. ms X, m Near Field Pressure Signature **Ground Pressure Signature** 

 $M_{\infty}$  = 1.6,  $\alpha$  = 2.15°, H/L = 3, Re = 109,776 per in,  $\phi$  = 0°

43

#### **USM3D-HANIM Solutions on Mixed-Element and Tetrahedral Grids**

 $M_{\infty}$  = 1.6,  $\alpha$  = 2.15°, H/L = 3, Re = 109,776 per in



### Mixed-Element and Production Versions of USM3D, C608-4 Tetrahedral Grid

 $M_{\infty} = 1.6$ ,  $\alpha = 2.15^{\circ}$ , H/L = 3, Re = 109,776 per in,  $\phi = 0^{\circ}$ 



### Mixed-Element and Production Versions of USM3D, C608-4 Tetrahedral Grid

 $M_{\infty}$  = 1.6,  $\alpha$  = 2.15°, H/L = 3, Re = 109,776 per in



## **C608 Low Boom Flight Demonstrator** USM3D-(PA vs HANIM) Convergence History

 $M_{\infty}$  = 1.6,  $\alpha$  = 0.0°, H/L = 3, Re = 109,776 per in



## **Concluding Remarks**

- Mixed-element USM3D simulations were conducted on all three SBPW-3 configurations
- sBOOM was used to propagate the nearfield signature to the ground and the loudness levels on the ground were computed
- Results uploaded to sonic boom workshop page
- $\succ$  For all three configurations, USM3D results show:
  - grid convergence on both the mixed-element and tetrahedral family of grids
  - mixed-element grids and the tetrahedral grids are in excellent agreement
  - grid topology has no effect on accuracy of solution
  - PA and HANIM yield identical results

## **Questions?**