

UNS3D Simulations for the 3rd AIAA Sonic Boom Prediction Workshop

Forrest L. Carpenter Paul G. A. Cizmas

> January 4, 2020 Orlando, FL

Presentation Outline

- Case summary
- Flow solver
- Simulation details
- Results
 - Biconvex wind-tunnel model
 - NASA C608 low-boom demonstrator
- Summary

Case Summary

Engineering

- Both workshop cases were considered in this work
 - Biconvex 9x7 shock-plume interaction wind-tunnel model
 - NASA C608 low-boom flight demonstrator
- Cases were run to committee specifications
- Nearfield signatures extracted using provided Tecplot macro

Biconvex shock-plume interaction wind-tunnel model¹

- In-house Reynolds averaged Navier—Stokes solver²
 - Edge-based finite volume method
 - Roe's upwind convective flux algorithm with Harten entropy correction
 - Second-order spatial and temporal accuracy
 - Gradient reconstruction by least-square with QR decomposition
 - Time integration by four-stage Runge-Kutta
 - Menter's κ — ω SST turbulence model
- UNS3D has been successfully used to predict nearfield flow for lowboom configurations considered in previous workshop^{3–5}

Flow Solver: UNS3D (Cont.)

- Piecewise linear reconstruction used to achieve second-order spatial accuracy
 - Requires use of solution limiters to prevent un-physical flow features
- Multiple limiters were exercised for comparison purposes
 - Venkatakrishnan⁶
 - Modified Venkatakrishnan⁷
 - Dervieux⁷

- High-performance parallel, distributed memory computing resources from Texas A&M University and NASA were used in this work
 - Ivy Bridge HECC Nodes were 1.5 times faster than TAMU nodes

	NASA HE	CC Nodes	Texas A&M		Average <u>Fine</u>
Case	Broadwell	Ivy Bridge	Intel Xeon	Cores: min/max	Mesh Run Time
Biconvex		Х	Х	84/336	1 Day
C608	Х	Х		336/1680	8 Days

Computational Grids

- Workshop provided grids were used in this work
 - Mixed-element grids only

Biconvex wind-tunnel grids used

NASA C608 grids used

Name	Scale	#Nodes	#Elements	Name	Scale	#Nodes	#Elements
Mixed-157	1.57	846,227	3,480,369	Mixed-128	1.28	11,782,783	29,824,790
Mixed-128	1.28	1,576,352	6,984,508	Mixed-100	1.00	20,701,451	50,028,335
Mixed-100	1.00	3,286,221	16,027,527	Mixed-080	0.80	34,879,443	82,274,480
				Mixed-064	0.64	50,215,130	122,651,312

Flow Solver Convergence

Biconvex Wind Tunnel Test Case

- Convergence criterion
 - Primary: 5 order drop in flow residual magnitude
 - Secondary: stabilization of body forces
- Each case setup to run 100,000 iterations
- Flow residuals achieved roughly 4 order drop in magnitude before convergence stalled
- Deemed converged based on body force histories

Figure: Typical flow and drag convergence, taken from fine mesh

٤

Fine Mesh Predicted Pressure Field

Biconvex Wind Tunnel Test Case

- Both limiters produce a qualitatively similar result
 - Venkatakrishnan result show more pronounced flow features
- Modified Venkatakrishnan solution nearly identical to standard limiter solution

Fine Mesh Pressure Gradient Magnitude

Biconvex Wind Tunnel Test Case

Dervieux Limiter

Venkatakrishnan Limiter

X/L 3rd AIAA Sonic Boom Prediction Workshop

Undertrack Nearfield Signature Grid Convergence

Biconvex Wind Tunnel Test Case

- Dervieux solutions exhibited most sensitivity to grid size
 - Most evident at local signature extrema
- Venkatakrishnan solutions overshot average experiment values at local extrema
 - Modified limiter produced nearly identical nearfield signatures as standard limiter
- Current solutions are qualitatively similar to published CFD predictions¹

Nearfield Signature Azimuth Angle Comparison Biconvex Wind Tunnel Test Case

• Predicted nearfield pressure showed good agreement with experiment data at all three measured azimuth angles

Flow Solver Convergence

NASA C608 Low-Boom Demonstrator

- Convergence criterion
 - Primary: 5 order drop in flow residual magnitude
 - Secondary: stabilization of body forces
- Dervieux limiter solutions achieved convergence on all but finest grid tried
- Venkatakrishnan limiter solution exhibited unsteady flow properties
 - Only able to obtain solution on coarsest mesh

Figure: Flow and lift coefficient convergence from coarse mesh simulations.

Coarse Mesh Predicted Pressure Field NASA C608 Low-Boom Demonstrator

- Venkatakrishnan limiter results in sharper representation of shocks and salient flow features
 - Introduces less dissipation than Dervieux limiter

Department of Aerospace Engineering

•

۲

features

Mixed-128 C608 Venkatakrishnan Energy Equation Residuals

- Large residuals located surface adjacent to:
 - Control surface gaps
 - Engine inlet mouth
 - Discontinuous surface feature
- Location of max residual sat in vicinity of discontinuous surface feature
 - Occasionally jumped to elevator gap location

16

Mixed-128 C608 Venkatakrishnan Energy Equation Residuals (Cont.) Primary Max Residual Location

• Backwards facing step with a surface "singularity"

17

Mixed-064 Dervieux C608 Divergence

- Solution diverges in early stages of simulation on finest grid tried
- Location of divergence found inside engine inlet region
- Associated with set of highly-skewed cells in prism/tet transition zone

ĀM

TEXAS A&M UNIVERSITY

Engineering

Mixed-064 Dervieux C608 Divergence (Cont.)

• Elements skewness equiangle ≥ 0.95 in vicinity of divergence

- Nearfield pressures predicted for biconvex shock-plume interaction model found to be in good agreement with published experimental data
- Use of a dissipative limiter was required to achieve convergence on three coarsest NASA 608 grids
 - Geometry simplification and strategic surface grid clustering could improve convergence in viscous dominated regions of flow
- Solution limiter study showed all three limiters tested produced solutions with good qualitative agreement
 - Dervieux limiter required a finer mesh to capture the lower amplitude features found in the nearfield pressure signatures

TEXAS A&M UNIVERSITY Engineering

Questions?

Thank you for your attention!

References

- 1. Durston, D. A., et al., "Nozzle Plume/Shock Interaction Experimental and Computational Sonic Boom Analyses from the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel", NASA TP-2018-219879, 2018.
- 2. Han, Z.-X, and Paul G. A. Cizmas "A CFD Method for Axial Thrust Load Prediction of Centrifugal Compressors", Int'l J. of Turbo & Jet-Engines, V. 20, N. 1, pp.1-16, 2003.
- 3. Carpenter, F. L., P. G. A. Cizmas, S. R. Reddy, and G. S. Dulikravich, "Controlling Sonic Boom Loudness Through Outer Mold Line Modification: A Sensitivity Study", AIAA 2019-0603, 2019.
- 4. Reddy, S. R., G. S. Dulikravich, F. L. Carpenter, and P. G. A. Cizmas, "Achieving Quieter Supersonic Flight Through Outer-Mold Line Modifications: An Optimization Study", AIAA 2019-3104, 2019.
- 5. Carpenter, F L, P. Cizmas, C. R. Bolander, T. N. Giblette, and D. F. Hunsaker, "A Multi-Fidelity Prediction of Aerodynamic and Sonic Boom Characteristics of the JAXA Wing Body", AIAA 2019-3237, 2019.
- 6. Venkatakrishnan, V., 1995. "Convergence to steady state solutions of the Euler equations on unstructured grids with limiters". Journal of Computational Physics, 118, pp. 120–130.
- 7. Carpenter, F. L. and P. G. A. Cizmas, "Transonic Fan Performance Evaluated with Different Solution Limiters", *Proceedings of the ASME 2017 Turbo Expo: Turbomachinery Technical Conference & Exposition*, GT2017-65174, 2017.

TEXAS A&M UNIVERSITY Engineering

Extra Slides

Predicted Pressure Field NASA C608 Low-Boom Demonstrator

Department of Aerospace Engineering