

Engineering, Operations & Technology Boeing Research & Technology

Propagation Prediction Cases

2nd AIAA Sonic Boom Prediction Workshop January 7-8, 2017 Grapevine, Texas

Hao Shen Boeing Research & Technology hao.shen@boeing.com

Introduction

- Two required test cases, each with four different atmosphere profiles, are analyzed.
- Boom carpet cutoff, ground signatures and loudness calculated.
- PCBOOM 6.6 used for all calculations

Test Cases

- Test Case 1:
 - LM1021 at Mach 1.6, Alt 16764 m (55000 ft)
 - Atmosphere profiles:
 - Atmosphere profile 1 (with wind)
 - Atmosphere profile 2 (with wind)
 - Standard atmosphere profile (no wind)
 - Standard atmosphere profile (no wind), with 70% relative humidity at all altitudes
- Test Case 2:
 - Shaped axi-symmetric body at Mach 1.6, Alt 15849.6 m (52000 ft)
 - Atmosphere profiles:
 - Atmosphere profile 3 (with wind)
 - Atmosphere profile 4 (with wind)
 - Standard atmosphere profile (no wind)
 - Standard atmosphere profile (no wind), with 70% relative humidity at all altitudes

Propagation Prediction Code

- PCBOOM 6.6:
 - FOBoom module performs full carpet ray tracing and provides cutoff positions on both edges.
 - PCBurg module propagates initial pressure signatures along the ray path. Geometric attenuation, nonlinearity, thermoviscous dissipation and molecular relaxation are included in the propagation model.
 - Ground reflection factor is applied at the end of the propagation.
 - Atmospheric pressure is calculated based on hydrostatic equation, input temperature profile and ground atmosphere pressure.
- Computing platform:
 - Windows workstation
- Code Parameters:
 - Sample frequency 102400 Hz
 - Step size factor: 0.05 (default)
 - Anti-Gibbs filter is off

Case One (1)

LM1021 with atmosphere profile 1: Wind, High Humidity

Ground Signatures

Loudness

Loudness

Case One (2)

LM1021 with atmosphere profile 2: Wind, Low Humidity

Ground Signatures

ASEL

68.42

70.67

70.12

Y (m)

-58679.85

-1170.49

41347.19

Case One (3)

LM1021 with standard atmosphere: No Wind, Standard humidity profile

Ground Signatures

Loudness

Case One (4)

LM1021 with standard atmosphere: No Wind, Constant 70% relative humidity

Ground Signatures

Loudness

Phi	PL	CSEL	ASEL
-30.0	88.98	97.64	74.13
0.0	91.39	97.82	76.95
30.0	88.98	97.64	74.13

Phi	X (m)	Y (m)
-49.84	32677.91	-31192.47
0.0	14684.29	0.00
49.84	32677.91	31192.47

Case Two (1)

Shaped axi-symmetric body with atmosphere profile 3: Wind, High humidity

Ground Signatures

Loudness

Phi	PL	CSEL	ASEL
-53.63	71.30	86.98	57.59
-45.00	77.18	89.16	62.78
0.00	81.44	92.29	67.11
45.00	78.57	89.99	63.91
49.72	73.74	87.14	59.54

Phi	X (m)	Y (m)
-53.63	52664.41	-50483.93
0.00	15791.69	-450.01
49.72	37546.00	32769.14

Case Two (2)

Shaped axi-symmetric body with atmosphere profile 4: Wind, Low humidity

Ground Signatures

Loudness

Phi	PL	CSEL	ASEL
-43.41	50.23	82.39	43.63
0.00	69.57	89.93	55.44
45.00	50.31	84.13	44.20
46.48	48.28	82.89	42.54

Phi	X (m)	Y (m)
-43.41	32956.87	-25959.24
0.00	15172.91	754.08
46.48	42262.11	38345.91

Case Two (3)

Shaped axi-symmetric body with standard atmosphere: No wind, Standard humidity profile

Ground Signatures

Phi	PL	CSEL	ASEL
-49.84	76.16	89.30	61.01
-45.00	78.70	90.21	64.41
0.00	80.58	91.92	66.26
45.00	78.70	90.21	64.41
49.84	76.16	89.30	61.01

Phi	X (m)	Y (m)
-49.84	31542.72	-30108.91
0.00	13952.16	0.0
49.84	31542.72	30108.91

Case Two (4)

Shaped axi-symmetric body with standard atmosphere: No wind, Constant 70% relative humidity

Ground Signatures

Phi	PL	CSEL	ASEL
-49.84	75.70	89.25	60.58
-45.00	77.80	90.10	63.36
0.00	79.76	91.77	65.47
45.00	77.80	90.10	63.36
49.84	75.70	89.25	60.58

Phi	X (m)	Y (m)
-49.84	31542.72	-30108.91
0.00	13952.16	0.0
49.84	31542.72	30108.91

Summary

- Side wind caused un-symmetry in cut-off positions and off-track ground signature in both case one and case two
- Standard atmosphere profile with a standard humidity profile produced very similar ground signatures and loudness as the standard atmosphere profile with a constant 70% relative humidity
- Low humidity in the atmosphere profile leads to more attenuations in the ground signature compared with high humidity in the atmosphere