2nd AIAA Sonic Boom Prediction Workshop

2nd AIAA Sonic Boom Prediction Workshop

sBOOM Propagation for the Second AIAA Sonic Boom Prediction Workshop

Michael J. Aftosmis

Computational Aerosciences Branch NASA Ames Research Center Moffett Field, CA 94035 *michael.aftosmis@nasa.gov*

George R. Anderson

Science and Technology Corp. Computational Aerosciences Branch Moffett Field, CA 94035 george.anderson@nasa.gov

Marian Nemec

Computational Aerosciences Branch NASA Ames Research Center Moffett Field, CA 94035 *marian.nemec@nasa.gov*

7-8 Jan 2017, Grapevine TX, USA

Introduction

- Propagation using sBOOM (v2.5)* for all cases
 - Solves augmented Burgers' equation
 - Finite-difference with space-operator splitting
- Loudness metrics computed with LCASB^T
- Applied current "best practices" for sampling frequency and signal close-out
- Ran all required & optional cases

* Rallabhandi, S. "Advanced Sonic Boom Prediction Using the Augmented Burgers Equation" J. of Aircraft, 48:1245–1253, 2011. [†] Shepard & Sullivan, "Loudness Code for Asymmetric Sonic Booms(LCASB)", NASA TP 3134, 1991

Outline

- Intro codes, conventions and studies
 - Codes & conventions
 - Accuracy requirements
 - Mesh refinement study

- Results Highlights
 - "Axibody" Body of revolution
 - "LM 1021" Wind tunnel model of full configuration from 2014 boom workshop
- Summary

Caveats on Accuracy Requirements

Decibels are logarithmic units!

Double the loudness $\rightarrow \sim 10 \, dB$ more sensed loudness level (psycho acoustic) Double the sound pressure level \rightarrow 6 dB more measured sound pressure level)

Caveats on Accuracy Requirements

Decibels are logarithmic units!

Double the loudness $\rightarrow \sim 10 \, dB$ more sensed loudness level (psycho acoustic) Double the sound pressure level \rightarrow 6 dB more measured sound pressure level)

- We numerically propagate pressure signals to the ground \rightarrow *Propagation error* has units of pressure
- Example
 - Error of ± 2 Pa on a 90dB signal may be less than ± 1 dB
 - The same error on a 70dB signal would be ±8dB
- For dB metrics, propagation accuracy requirements increase logarithmically as signals get quieter!
- for a 70 dB signal

Sampling frequency for a 90 dB signal is likely to be insufficient

Caveats on Accuracy Requirements

Decibels are logarithmic units!

Double the loudness $\rightarrow \sim 10 \, dB$ more sensed loudness level (psycho acoustic) Double the sound pressure level \rightarrow 6 dB more measured sound pressure level)

- We numerically propagate pressure signals to the ground \rightarrow *Propagation error* has units of pressure
- Example
 - Error of ± 2 Pa on a 90dB signal may be less than ± 1 dB
 - The same error on a 70dB signal would be ±8dB
- For dB metrics, propagation accuracy requirements increase logarithmically as signals get quieter!
- for a 70 dB signal

Sampling frequency for a 90 dB signal is likely to be insufficient

- Quasi-1D integration of Burger's equations occurs in tube along the ray path
- Determines the ground intercept of sound emanating from given trajectory point & azimuth
- Ray path determines time required for signal propagation

Wind Effects

- Effects of wind shown on raytube for ray at $\phi=0^{\circ}$
- Path is scaled by local ray tube area

Sensitivity of noise output to discretization of near field signal

- Propagation code is solving augmented Burgers' via finite difference
- Need to make sure outputs are sufficiently mesh converged
 - Mesh convergence is case dependent
 - Mesh refinement study done for each input signal (std. atmosphere)
- Truncation error directly impacts accuracy, resolution requirements are driven by need to minimize error in propagation
 - Initial signal typically has < 2000 points
 - Propagation typically requires 20000-50000 points (oversampled by 20-50x)
- How much accuracy is needed?

 - Atmospheric variability generally 2-5 dB, but may be $\sim 10 dB$ in some cases Generally tried to keep propagation error under ±0.1 dB

- Both dB(A) and PLdB show similar behavior
- Reasonable mesh convergence on ±2dB scale
- Absolute mesh convergence not great, even at higher frequencies

- Slow mesh convergence not surprising
 - Signal is non-smooth, and integrated loudness outputs are highly sensitive
- Oversampling of input introduces higher frequencies which effect loudness output
 - @ 285 kHz, we're oversampling the non-smooth input by a factor of ~50x
- 107 kHz (30 kpts) gives better than ±0.1 dB accuracy used for all axibody cases

Shaped axisymmetric body of revolution

Conditions: $M_{\infty} = 1.6$ Altitude = 15849.6 m (52 kft) Lref = 42.98m (141 ft) r/L = 3.0 at signal extraction Ground reflection factor = 1.9 Heading East ($\beta = 0^{\circ}$)

Cases:

Required: Atm #3 Optional #1: Std. Atm. Optional #2: Atm #4 Optional #4: Std. Atm. with 70% humidity

- Compared 2 different closures (both linear ramps) gave consistent results
- Closed signal using linear ramp to 0 at 100 m
- Ground signals & noise both virtually identical (within 0.02 dBA)

Ground signature – Standard Atm. vs Atmosphere 3, $\phi = \{-45^\circ, 0^\circ, 45^\circ\}$

- Atm #3 has slightly more noise on-track
- Propagation time roughly 70 sec @ $\phi=0^{\circ}$ & 112–120 sec @ $\phi=45^{\circ}$

Ground signature – Standard Atm. vs Atmosphere 4, $\phi = \{-45^\circ, 0^\circ, 45^\circ\}$

• Atm #4 cutoff before $\phi = +45^{\circ}$

Ground signature – Standard Atm. vs Standard Atm. + 70% Relative Humidity

- Optional #3: constant relative humidity of 70%
- Results with 70% RH are ~1dB quieter
- Seems counter intuitive, usually humidity improves propagation (louder)

Raytubes, standard atmosphere

Colored by raytube area

Raytubes, Atm #3

Colored by raytube area

Perceived loudness at ground level

- Atm #3 loudest ontrack
- other metrics show similar trends.
- Atm #4 off track very close to cutoff at ±45°
- Atm #4 cutoff before $\phi = +45^{\circ}$

$$\Phi = 0^{\circ}$$

$$\phi = +45^{\circ}$$

dB(A): A-Weighted loudness at ground level

- Atm #3 loudest ontrack
- other metrics show similar trends.
- Atm #4 cutoff before $\phi = +45^{\circ}$

 $\Phi = +45^{\circ}$

dB(C): C-Weighted loudness at ground level

- SEL(C) shows most variation with azimuth angle
- Also shows least variation between Atm #4 and others

$$\mathbf{\Phi} = +45^{\circ}$$

Signal cutoff

Atmosphere Profile

Atm # 3

 Propagation time near cutoff around 3-4 mins

Std. Atm

Atm # 4

Std. Atm + 70% humidity

Cutoff (– ф °)	Cutoff (+ φ °)
(x, y) km	(x, y) km
-50.28°	53.08°
(44.1, 39.3) km	(48.5, -46.1) km
-53.38°	53.38°
(35.9, 34.5) km	(35.9, -34.5) km
-46.70°	43.89°
(44.9, 40.8) km	(35.9, -30.7) km
-53.38°	53.38°
(35.9, 34.5) km	(35.9, -34.5) km

Signal cutoff

Atmosphere Profile

Atm # 3

- Propagation time near cutoff around 3-4 mins
- Winds generally increase track width (from 70 to ~85 km)

Atm # 4

Std. Atm

Std. Atm + 70% humidity

Cutoff (– ф °) (x, y) km	Cutoff (+ φ °) (x, y) km	Track Width	
-50.28° (44.1, 39.3) km	53.08° (48.5, -46.1) km	85.4 km	
-53.38° (35.9, 34.5) km	53.38° (35.9, -34.5) km	69.0 km	
- 46.70° (44.9, 40.8) km	43.89° (35.9, -30.7) km	71.5 km	
-53.38° (35.9, 34.5) km	53.38° (35.9, -34.5) km	69.0 km	

Wind tunnel model from 1st boom workshop (2014)

Conditions: $M_{\infty} = 1.6$ Altitude = 16.7 km (55 kft) Lref = 71.12 m (233.33 ft) r/L = 3.1299 at signal extraction Ground reflection factor = 1.9 Heading East ($\beta = 0^{\circ}$)

Cases: Required: Atm #1 Optional #1: Std. Atm. Optional #2: Atm #2 Optional #4: Std. Atm. with 70% humidity

Near Field Signatures

Signals closed with a linear ramp to 435 m

Ground signature: Standard Atmosphere, $\phi = \{-30^{\circ}, 0^{\circ}, 30^{\circ}\}$

Sampling Frequency = 75.6 kHz, 40 kpts

Ground signature – Atmosphere #1, $\phi = \{-30^\circ, 0^\circ, 30^\circ\}$

Ground signature – Atmosphere #2, $\phi = \{-30^\circ, 0^\circ, 30^\circ\}$

Atm 2: dry air, windy day $\rightarrow \sim 5$ dB quieter than Std. Atm. conditions

Ground signature – Standard atmosphere +70% relative humidity, $\phi = \{-30^\circ, 0^\circ, 30^\circ\}$

Slightly quieter (0.3-0.4 dB) than in std atmosphere

Raytubes, Standard Atmosphere

Colored by raytube area

Raytubes, Atmosphere #1

Raytubes, Atmosphere #2

Raytubes, Standard Atmosphere with 70% relative humidity

Perceived loudness at ground level

- Atm #1 loudest on-track
- Asymmetry due to wind
- Atm #2 is 5-7 dB quieter
- Other metrics show similar trends.

A-Weighted Loudness at ground level

- Atm #1 loudest on-track
- Asymmetry due to wind
- Atm #2 is 5-7 dB quieter
- Other metrics show similar trends.

C-Weighted Loudness at ground level

• Windy cases very asymmetric in dB(C)

 $\Phi = +30^{\circ}$

Signal cutoff

Atmosphere Profile

Atm # 1

- Track width ~70km in std. atmosphere, but extends to over 110km due to atmospheric variation
- Atm #2 took over 3 mins upwind and 5 mins downwind for signal at cutoff

Atm # 2

Std. Atm

Std. Atm + 70% humidity

Cutoff (– ф °) (x, y) km	Cutoff (+ ф °) (x, y) km	Track Width
-57° (40.0, 42.3) km	74° (39.4,-44.6) km	86.9 km
-50.38° (37.0, 35.6) km	50.38° (37.0, -35.6) km	71.2 km
-64.65° (43.9, 41.7) km	59.35° (67.0, -69.7) km	111.4 km
-50.38° (37.0, 35.6) km	50.38° (37.0, -35.6) km	71.2 km

Summary

- Applied sBOOM and LCASB for all required and optional propagation cases
- Mesh convergence study to ensure propagation accuracy of about ±0.1 PLdB
- Mesh convergence is relatively slow on intricate non-smooth input signals
- Observed atmosphere variation of +2 to -10 PLdB on track, with as much as 20 PLdB of attenuation off-track
- Crosswinds generally increase track width and can result in relatively large cutoff azimuths
- Hot dry days produce the quietest signals and the narrowest track widths
- Raytube visualization shows potential for loud off-track azimuths to be blown back under-track

Questions?

