ONERA

 J_{Ω}

THE FRENCH AEROSPACE LAB

retour sur innovation

www.onera.fr

ONERA contribution to the SBPW2 Propagation

Gérald Carrier, ONERA, Applied Aerodynamics Dept., Meudon, France

THE FRENCH AEROSPACE LAB

retour sur innovation

Outline

- Introduction
- Prediction codes
 - Short description
 - Specific parameters/options
- Summary of analysed cases
- Results for Case 1 (Axisymetrical body)
- Results for Case 2 (LM1021)
- Highlights
- Conclusions

Introduction: Background

PhD ONERA/INRIA

Aerodynamics /sonic boom optimization (A. Minelli, 2010-2013):

- Collaboration with INRIA (both OPALE and GAMMA2 teams)
- Advanced sonic boom prediction methods: CFD, mesh adaptation, multipole matching
- Advanced multicriteria optimization techniques : Nash Games, Multiple Gradient Descent Algorithm (J.A. Désidéri)

- ONERA/JAXA

· Analysis of DSEND#1 experiments :

 QSST DESIGN by inverse design method

— ONERA/AIAA

AIAA Sonic Boom Prediction Workshop:

- Participation to the first AIAA SBP workshop in collaboration with Dassault Aviation and INRIA
- Validation of CFD-based prediction capabilities

SAIAA

Propagation code

Long term collaboration with F. Coulouvrat (UPMC) since 2000:

- French national projects (COS, DGAC)
- EU projects (HISAC, ATLLAS, ATLLASII)

Use of the Airbus/UPMC code BANGV

ONERA/STANFORD

Use of Stanford SU² code for sonic boom/aero optimizations

Application of ONERA sonic boom prediction tools on configuration Lockheed-Martin

Adjoint based optimization of sonic boom (SU²)

Sonic boom evaluation of LMCO configuration

Prediction codes Available codes at ONERA for SB

- Multipole matching code
 - In-house code based on Plotkin and Page, 2002 [1]
- Propagation codes:
 - In-house code based on TRAPS [2] code (non viscous)
 - BANGV : developped at UPMC/CNRS (Université Pierre et Marie Curie, Paris) by F. Coulouvrat et al., Airbus property
- Loudness calculation:
 - pyBoomMetrics: in-house Python code for dB, PLdB, A-SEL, C-SEL metrics calculation
 - Internal BANGV loudness routines

[1] I. Salah El Din et al., « Impact Of Multipole Matching Resolution On Supersonic Aircraft Sonic Boom Assessment », Progress in Flight Physics 5 (2013) 601-620
[2] A. D. Taylor, « The Traps Sonic Boom Program », NOAA Technical Memorandum ERL ARL-87, July 1980 Air Resources Laboratories, Silver Spring, Maryland

Prediction codes: BANGV – v4

BANGV - v4:

- Assumptions:
 - Stratified atmosphere, no turbulence
 - Flat, absorbing ground
- Methods:
 - Ray tracing: integrating a system of 13 ODEs in dZ, specific param. near ground)

ONERA

- Along rays: solves Burgers equation (with dissipation due to thermoviscous effects + molecular relaxation)
- Ground reflection : mult. factor (1,9)
- Diffraction at the limit of carpet by Fock integral
- Shadow zone at and after cutoff: creeping wave
- Capable of calculating more complex physics such as caustics (Tricomi equ.)
- Inputs:
 - SB Source: Whitham F function or pressure at a distance of the A/C
 - Trajectory, atmospherical data (T, rho, RH, wind) interpolated by cubic spline
- Perfos: typical runtime few tens of CPUs for 1 ray on one single 2GHz PC processor

Specific parameters/options

- Data pre/post-processing:
 - Direct matching (no use of multipole matching)
 - Change axis for A/C trajectory (X-> -Y, Y->X)
 - Altitude shift of atm. data to have ground at alt. zero
 - Apply factor 1.9/2.0 on ground pressures on BANGV results
- Propagation:
 - Discretization:
 - Pressure input signal re-sampled every ~0.01 m with 32,768 points
 - Rays integration : 200 steps (for dissipative effects)
 - Altitude: 500,000 points (for identification of carpet limits rays)
- Loudness metrics calc.:
 - Resampling at 46 kHz
 - Max. freq for spectrum integration: 10 kHz

Summary of analysed cases

			Ground pressure	Lateral cut-off rays	Loudness
Near-field- SBPW2 Axi body		Std. Atm.	-45°,0°,45° (BANGV + TRAPS)	BANGV, TRAPS	pyBoomMetrics
	Case 1 Axi body	Std. Atm. + 70% RH	-45°,0°,45°(BANGV)	BANGV	pyBoomMetrics
		Atm. Profile 3	-45°,0°,45° (BANGV)	BANGV	pyBoomMetrics
		Atm. Profile 4	-45°,0°,45° (BANGV)	BANGV	pyBoomMetrics
Near-field- LM1021		Std. Atm.	-30°,0°,30°(BANGV)	BANGV	pyBoomMetrics
	Case 2 LM1021	Std. Atm. + 70% RH	-30°,0°,30°(BANGV)	BANGV	pyBoomMetrics
		Atm. Profile 1	-30°,0°,30°(BANGV)	BANGV	pyBoomMetrics
300 350 x 400 450 500		Atm. Profile 2	-30°,0°,30°(BANGV)	BANGV	pyBoomMetrics

Results for Case 1 (Axisymetrical body) Lateral carpet extent / cut-off angles

	∕ min (deg)	∕ max (deg)	Ymin (m)	Ymax (m)
Stand. Atm.	-49.6	49.6	-28006	28006
Stand. Atm. + 70% RH	-49.6	49.6	-28006	28006
Atm. Profile 3	-53.7	47.5	-64160	25186
Atm. Profile 4	-44.0	46.5	-35340	52615

ONERA

Results for Case 1 (Axisymetrical body) Ground propagated signals (ϕ =-45°, 0°, 45°)

THE PRENCH ADDRESS LAB

Results for Case 1 (Axisymetrical body) Ground propagated signals (lateral cut-off)

Results for Case 1 (Axisymetrical body) Loudness

Stand. Atm.	PLdB	CSEL	ASEL	Stand. Atm. + 70% RH	PLdB	CSEL	ASEL
Φ = - 45°	79.11	90.93	64.42	Φ = - 45°	78.55	90.75	63.86
$\boldsymbol{\phi} = 0^{\circ}$	80.60	91.92	65.61	Φ = 0°	80.27	91.78	65.32
Φ = 45°	79.11	90.93	64.42	Φ = 45°	78.55	90.75	63.86
# min	79.05	88.82	61.41	Ø min	78.78	88.67	61.08
Φ max	79.05	88.82	61.41	Ø max	78.78	88.67	61.08

Atm. Profile 3	PLdB	CSEL	ASEL
Φ = - 45°	75.39	88.39	60.99
Φ = 0°	81.07	91.98	65.74
Φ = 45°	78.25	89.89	63.61
@ min	80.17	91.67	61.80
Φ max	77.08	89.25	62.18

Atm. Profile 4	PLdB	CSEL	ASEL
⊅ = - 45°	-	-	-
⊅ = 0°	71.48	89.45	56.68
⊅ = 45°	50.66	81.84	41.19
# min	18.44	69.08	28.99
P max	71.47	82.15	54.36

Results for Case 2 (LM 1021) Lateral carpet extent / cut-off angles

	<i>Ф</i> min (deg)	∕ max (deg)	Ymin (m)	Ymax (m)
Stand. Atm.	-49.7	49.7	-29109	29109
Stand. Atm. + 70% RH	-49.7	49.7	-29109	29109
Atm. Profile 1	-69.8	53.8	-64160	25186
Atm. Profile 2	-59.3	65.2	-73253	46776

ONERA

Results for Case 2 (LM 1021) Ground propagated signals (ϕ = -30°, 0°, 30°)

THE PRINCIPAL PRIMACE LAW

Results for Case 2 (LM 1021) Loudness metrics

Stand. Atm.	PLdB	CSEL	ASEL	Stand. Atm. + 70% RH	PLdB	CSEL	ASEL
Φ = - 30°	89.27	98.14	74.06	Φ = - 30°	89.01	98.04	73.77
$\boldsymbol{\phi} = 0^{\circ}$	91.13	97.84	76.13	Φ = 0°	90.75	97.72	75.79
Φ = 30°	89.27	98.14	74.06	Φ = 30°	89.01	98.04	73.77

Atm. Profile 1	PLdB	CSEL	ASEL	Atm. Profile 2	PLdB	CSEL	ASEL
φ = - 30°	90.70	98.07	76.64	Φ = - 30°	81.74	94.56	67.31
$\phi = 0^{\circ}$	93.48	98.02	79.38	$\boldsymbol{\phi} = 0^{\circ}$	87.34	95.98	72.22
Φ = 30°	88.58	96.82	74.21	Φ = 30°	83.93	95.96	68.82

Highlights

- Impact of tail pressure relaxation in the near-field
- Detected an issue in ONERA ground pressure (therefore loudness) results at cut-off
- Comparison between TRAPS and BANGV propagation codes :

Conclusions

- Both AXIsymetrical Body and LM1021 test cases computed for all atmosphere profiles
- BANGV-v4 code used for propagation and loudness metrics calculated with inhouse code
- Perspectives :
 - Investigate and fix the prblm detected on lateral cut-off signals
 - More extensive convergence studies (propagation code parameters, loudness calculation)
- Suggestions for future SBPW :
 - Validation of interim ray tracing results (comparison of 3D ray paths, ray area)
 - Spectrum comparison
 - Validation of loudness calculation code on common ground propagated signal(s)
 - Focalisation cases

ONERA

 J_{Ω}

THE FRENCH AEROSPACE LAB

retour sur innovation

www.onera.fr