

USM3D Simulations for Sonic Boom Workshop

Melissa Carter, Alaa Elmiligui, NASA LaRC, Hampton VA. Susan Cliff, NASA Ames Research Center, Moffett Field, CA. Sudheer Nayani, Analytical Services & Materials, Hampton VA. Jason Pearl, University of Vermont, Burlington, VT.

Work funded by NASA Aeronautics Research Mission Directorate Commercial Supersonic Technology (CST) Project

2nd AIAA Sonic Boom Prediction Workshop, 7-8 January 2017, Grapevine, Texas

- Test Cases
- Grid Generation
- Numerical Results
- Summary

Second AIAA Sonic Boom Prediction Workshop

- Four Configurations:
 - Low Boom Body of Revolution
 - JAXA Wing-Body Configuration
 - NASA C25D Configuration with Flow Through Nacelles
 - NASA C25D Configuration with Powered Nacelles

<u>Tetrahedral Unstructured Software System, TetrUSS</u>

A proven, stable, and reliable multi-platform system for unstructured Euler and Navier-Stokes CFD analysis.

Geometry Setup GridTool

Grid Generation VGRID OpenGL

- Complete flow analysis system
- Well developed infrastructure
- In-house experts
- Broad outside collaborations
- Design via. CDISC/SUSIE
- Workhorse system with large experience/confidence base

Flow Solver USM3D

Visualization SimpleView (Commercial Packages)

Tools & Utilities

4

Numerical Tools

- USM3D Tetrahedral Flow Solver
 - Tetrahedral Cell-Centered, Finite Volume
 - Euler and Navier-Stokes
 - Time Integration
 - LTS and 2nd order time stepping
 - Upwind Spatial Discretization
 - FDS, AUSM, HLLC, LDFSS, FVS
 - Min-mod limiter
 - Turbulence Models SA, kε, SST
- SBOOM, Loudness

Computational Grids

- Workshop provided grids (AFRL3)
- In-house grids generated by VGRID
 - Used best practices for grids
 - Time permitting, scaled the grids to try to match workshop grid count
- In-house grids generated by Pointwise[®] Software
 - Low Boom Body of Revolution, JAXA wing-body and C25D Configuration with Flow Through Nacelle grids generated with automated system
 - C25D Configuration with Powered Nacelles grids generated with MCAT

VGRID Grid Generation Process

BG Collar Grid Generation Code

- Extrude layers of prisms through faces on core grid outer boundary
- Split prisms into tetrahedral cells and merge with core grid
- Radial angle reference point for extrusion located close to configuration nose
- Vary height of reference point to focus grid at selected radial angles

Conversion of Pointwise[®] Grid to Tetrahedra

Simulation Conditions:

- Mach 1.6
- Angle of attack 0.0°
- Reference length 32.92 m
- Altitude 15760 m
- Temperature 216.65 K
- Flight Reynolds Number per meter 5.70 million

 Workshop provided grids were a subdivision of the mixed-element grids generated by AFLR3.
Grids are in full scale meters and have a uniformly refined spacing.

Grid	Nodes	Tetrahedra
1	646,467	3,705,046
2	1,601,681	9,243,626
3	5,077,104	29,682,640
4	15,911,412	93,751,314
5	56,085,031	332,136,840

• In-house Pointwise[®] grids

Grid	Nodes	Tetrahedra
1	513,059	2,827,119
2	2,058,461	11,883,313
3	4,108,837	23,972,083

• In-house VGRID grids

Grid	Nodes	Tetrahedra
BG 0	3,035,706	17,578,723
BG 1	15,918,977	93,341,956
MCAP 1	18,857,954	110,829,694

Symmetry Plane Overpressure Contours, Mach=1.6

Ground Signature Computed from H/L=1

Ground Signature Computed from H/L=5

18

Comparison of Near Field Pressure Signature, H/L=1

Ground Signatures Computed from H/L=1

Comparison of Near Field Pressure Signature, H/L=5

Ground Signatures Computed from H/L=5

AFRL3 Grid Results

VGRID Grid Results

Simulation Conditions:

- Mach 1.6
- Angle of attack 0.0°
- Reference length 38.7 m
- Reference area 32.8 m²
- Altitude 15760 m
- Temperature 216.65 K
- Flight Reynolds Number per meter 5.70 million

 Workshop provided grids were a subdivision of the mixed-element grids generated by AFLR3.
Grids are in full scale meters and have a uniformly refined spacing.

Grid	Nodes	Tetrahedra
1	6,491,425	37,397,159
2	11,335,260	65,432,421
3	18,875,613	109,141,197

• In-house Pointwise[®] grids

Grid	Nodes	Tetrahedra
1	1,564,296	9,085,323
2	3,108,124	18,218,984
3	7,532,028	44,485,342

• In-house VGRID grids

Grid	Nodes	Tetrahedra
BG	4,469,805	25,999,618

Symmetry Plane Overpressure Contours, Mach=1.6

Symmetry Plane Overpressure Contours, Mach=1.6

31

32

34

35

Ground Signatures Computed from H/L=1

Near Field Pressure Signature, H/L=1, $\Phi = 0^{\circ}$

Ground Signatures Computed from H/L=1, Φ=0°

Near Field Pressure Signature, H/L=1, Φ=30°

Ground Signatures Computed from H/L=1, Φ=30°

Near Field Pressure Signature, H/L=1, Φ=50°

Ground Signatures Computed from H/L=1, Φ=50°

Simulation Conditions:

- Mach 1.6
- Angle of attack 0.0°
- Reference length 32.92 m
- Reference area 37.16 m²
- Altitude 15760 m
- Temperature 216.65 K
- Flight Reynolds Number per meter 5.70 million

 Workshop provided grids were a subdivision of the mixed-element grids generated by AFLR3.
Grids are in full scale meters and have a uniformly refined spacing.

Grid	Nodes	Tetrahedra
1	3,419,776	19,995,530
2	6,323,343	37,082,947
3	13,083,168	77,082,860
4	26,923,206	159,106,053
5	51,542,500	305,204,267
6(v)	4,789,378	28,090,664

• In-house Pointwise[®] grids

Grid	Nodes	Tetrahedra
1	9,909,609	58,290,541
2	15,733,466	92,820,860

Symmetry Plane Overpressure Contours, Mach=1.6

Near Field Pressure Signature, H/L=1

Ground Signatures Computed from H/L=1

Near Field Pressure Signature, H/L=5

Ground Signatures Computed from H/L=5

Simulation Conditions:

- Mach 1.6
- Angle of attack 0.0°
- Reference length 32.92 m
- Reference area 37.16 m²
- Altitude 15760 m
- Temperature 216.65 K
- Flight Reynolds Number per meter 5.70 million

 Workshop provided grids were a subdivision of the mixed-element grids generated by AFLR3.
Grids are in full scale meters and have a uniformly refined spacing.

Grid	Nodes	Tetrahedra
1	3,421,840	19,987,689
2	6,393,433	37,486,198
3(v)	4,856,211	28,470,874
4(v)	9,052,973	53,267,121

• In-house Pointwise[®] grids

Grid	Nodes	Tetrahedra
1	23,603,132	138,682,615
2	24,647,501	145,058,957

• In-house VGRID grid

Grid	Nodes	Tetrahedra
BG	9,616,415	56,048,830

25D Plume Mesh Study (Pointwise[®] Software)

Two High-quality meshes with same surface and volume except in the plume region

- Mesh 1 carries anisotropic boundary layer refinement into plume (.00001 m spacing)
- Mesh 2 coarsens 4 orders of magnitude in plume (.01 m spacing)

Symmetry Plane Overpressure Contours, Mach=1.6

Symmetry Plane Overpressure Contours, Mach=1.6

Ground Signatures Computed from H/L=1

Ground Signatures Computed from H/L=5

AFLR3 160

Near Field Pressure Signature, H/L=1, Φ=0°

PW1 Grid Aft Difference

Near Field Pressure Signature, H/L=1, Φ=30°

Near Field Pressure Signature, H/L=5, Φ=0°

Near Field Pressure Signature, H/L=5, Φ=30°

Ground Signatures Computed from H/L=1, Φ=0°

Ground Signatures Computed from H/L=5, Φ=0°

Summary

- USM3D simulations were conducted on all four configurations provided by the sonic boom workshop
- Simulations were conducted on workshop provided grids as well as in house grids
- SBOOM used to propagate the nearfield signature to the ground
- Loudness code used to compute the loudness at the ground

References

- USM3D: https://tetruss.larc.nasa.gov/usm3d/
- Sboom: Sriram K. Rallabhandi. "Advanced Sonic Boom Prediction Using the Augmented Burgers Equation", Journal of Aircraft, Vol. 48, No. 4 (2011), pp. 1245-1253.
- Loudness: K.P. Shepherd and B.M. Sullivan. "A loudness calculation procedure applied to shaped sonic booms", NASA-TP-3134, 1991.

Shaping the Future of Aerospace