Near-Field Analysis with CFD++

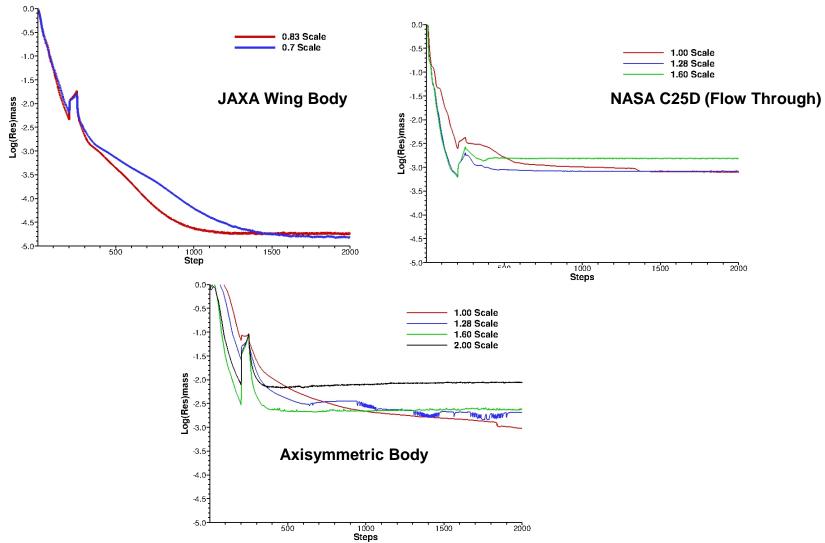
Frank Marconi and John Morgenstern 20 February 2017

AIAA 2017-SBPW2

Flow Solver & Computing Platform

- CFD++ V12.1.1
 - 2nd Order, node-based, TVD with continuous limiter
 - Implicit Runge-Kutta with multigrid
 - Realizable K-epsilon (RKE) turbulence model
- IBM Cluster
 - 8 nodes 16 processors/node
 - Limited computing availability due to other program usage

Cases Run



- Ran Only Workshop Provided Grids
- Axie
 - Inviscid, mixed grid, scales 1.00, 1.28, 1.60, 2.00
- JWB
 - Inviscid, tetrahedral grid, scales 0.70, 0.83, 1.00
- C25D Flow-Through
 - Viscous (RKE), mixed grid, scales 1.00, 1.28, 1.60, 2.00
- C25D Powered
 - Viscous (RKE), mixed grid, scales 1.28, 1.60, 2.00

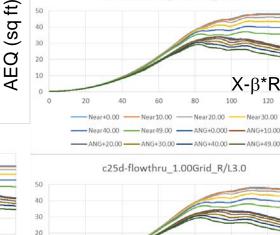
Flow Solver Convergence

AIAA 2017-SBPW2

Oscillations due to grid quality structured vs unstructured

Solution Quality

- Running finer grids until grid convergence improves confidence
 - But what if the solution is "wrong" (for example BCs database corruption, typo [00023769 vs 0.0023769], etc.)
 - ➤ Other solution properties and trends can be checked, some examples are:
 - Convert Dp/p into AEQ and examine its behavior
 - Compare Far-Field and Near-Field Dp/p and AEQ
 - Check solution Dp/p magnitude behavior vs square-root of distance (in the far-field: like from the forebody or from farfield corrected Dp/p)


Solution Quality Checks

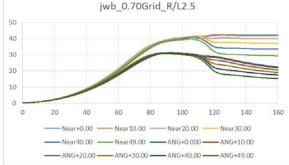
• Examine AEQ behavior: shape, near-far-field, with distance

c25d-flowthru 1.00Grid R/L1.0

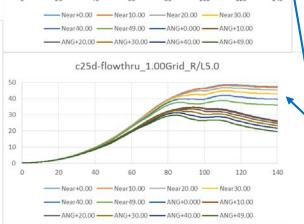
Note: Near-to-far-field corrections calculated from Phi 0-50 data with (cosine) extrapolation of 60-180 data, so increments are approximate, particularly at higher Phi.

Increasing near-field and level far-field is expected behind the vehicle

c25d-powered 1.28Grid R/L3.0


Near+0.00 — Near10.00 — Near20.00 — Near30.00

Near40.00 —— Near49.00 —— ANG+0.000 —— ANG+10.00


— ANG+20.00 —— ANG+30.00 —— ANG+40.00 —— ANG+49.00

near-field AEQs

far-field AEQs

Symmetrical jwb solution until 110 – 120 ft

Total AEQs are slightly higher at the closest distance R/L = 1.0 (vs 3.0 and 5.0)

