

Near-field Pressure Signature Prediction by JAXA

Hiroaki ISHIKAWA (ASIRI) Yoshikazu MAKINO (JAXA) Atsushi UENO (JAXA) Yohei KASUGA (University of Tokyo)

Outline

- I. Summary of cases analyzed
- II. Flow solver / Computing platform
 - ✓ Flow solver (TAS)
 - ✓ Computing platform : JSS2
- III. JWB
 - ✓ Design method and Wind tunnel test schedule
 - ✓ Flow solver convergence
 - ✓ Limiter function
 - ✓ Results
- IV. AXIE
- V. C25D
- VI. Comparison
 - ✓ AXIE, JWB, C25D
- VII. Conclusion

Summary of cases analyzed

Model	Providor	viscousity	mesh	Grid Spacing(Resolution)					
axie		inviscid	mixed	2.56	2	1.6	1.28	1	
	2BPW		tetrahedra	2.56	2	1.6	1.28	1	
jwb	SBPW	inviscid	tetrahedra	1	0.83	0.7			
c25d-flowthru	SBPW	in the stat	mixed	2	1.6	1.28	1	0.8	0.64
		v inviscia	tetrahedra	2	1.6	1.28	1	0.8	

Propagation (optional) analysis are carried out for above cases.

JWB

axie

Flow solver/Computing Platform

CFD solver

Solver	TAS
	Tohoku university Aerodynamic Simulation
developer	Tohoku university & JAXA
Mesh	Unstructured mesh
	cell-vertex finite volume
discretization scheme	HLLEW
spatial accuracy	2nd order
limiter function	Venkatakrishnan
time integration	LU-SGS implicit method
Equation	Euler

Propagation(Optional)

Xnoise : Burgers equation MPnoise : Multi-pole method Boom metre : Loudness estimation

Computing Platform JSS2 SORA-MA

- JAXA Supercomputer System generation 2
- Fujitsu Supercomputer PRIMEHPC FX100
- Architecture: Scalar machine
- Processor Type = SPARC64 Xlfx (32 cores/node)
- Nodes/System = 3,240 nodes
- Memory/Node = 32GiB
- Memory/System = 101.25TiB
- Peak Performance = 3.495 PFLOPS

3-400 processors x 2-3.5h for SBPW2

Details will be presented by Knamori

(tommrrow).

JWB

viscousity	mesh	Grid S	Spacing(Resol	g(Resolution)		
inviscid	tetrahedra	1	0.83	0.7		

JAXA Wing Body (JWB) designed

- Step 1; Equivalent area (AE) based optimization
 - Euler analysis to evaluate lift component of equivalent area.
 - Free-form deformation (FFD) to optimize body shape.

- Step 2; Reversed equivalent area (AE,r) based optimization
 - Euler analysis to evaluate near-field pressure distribution.
 - Multi-pole analysis to consider pressure propagation in circumferential direction.

JAXA Wing Body (JWB) designed

Optimization of body shape to meet NASA 25D

JAXA Wing Body (JWB) designed

75.1 PLdB; NASA 25D 84.7 PLdB; AE optimized 78.9 PLdB; AE,r optimized

Wind Tunnel Testing will be held in 2 weeks.

Flow solver convergence

X(m)

X(m)

-10

Venkatakrishnan limiter (AIAA 93-080)

$$\Phi_{i+1/2} = \frac{1}{\Delta_{-}} \left[\frac{\left(\Delta_{+}^{2} + \varepsilon^{2}\right)\Delta_{-} + 2\Delta_{-}^{2}\Delta_{+}}{\Delta_{+}^{2} + 2\Delta_{-}^{2} + \Delta_{-}\Delta_{+} + \varepsilon^{2}} \right]$$
$$\varepsilon^{2} = \left(K\overline{\Delta}\right)^{3}$$

where $\overline{\Delta}$ is an average grid size and *K* is a constant (limiter factor).

К	Stability	Accuracy	Provided data		
1	Low	High	JWB		
0.1					
0.01	Į		C25D		
0.001	High	Low	AXIE		

Limiter factor, K

Limiter Function

Limiter Function :K=1.0

Limiter Function :K=0.1

Limiter Function :K=0.01

Limiter Function :K=0.001

Limiter Function

Near field

Grid dependency is not observed among 100 - 070.

Ground & Loundness

Model	Providor	viscousity	mesh	Grid Spacing(Resolution)					
		invionid	mixed	2.56	2	1.6	1.28	1	
axie	SDEVV	Inviscia	tetrahedra	2.56	2	1.6	1.28	1	

axie-inv-mixed-256, K=0.1

TAS code is sensitive for mesh quality.

C25D viscous and powered could not be solved using provided grid from SBPW2.

JAXA

Near Field → **Propagation**

Near-field & Ground (ϕ =0deg)

Mixed

Mixed series have similar characteristics as Tetra series.

AXIE-mixed

AXIE-mixed : 100 vs 128

Oscillations appear again even at K=0.001.

Loudness of AXIE

100-160 are almost same. \rightarrow converged

C25D (Flow through)

Model	Providor	viscousity	mesh	Grid Spacing(Resolution)						
	SBPW	inviscid	mixed	2	1.6	1.28	1	0.8	0.64	
cz5a-nowthru			tetrahedra	2	1.6	1.28	1	0.8		

Near field: mixed

Near field: tetra

Ground: mixed

Ground: tetra

Loudness : Grid dependency

Loudness : Extracted position

Coarse mesh (200)

Multi-pole + Burgers

Model	Providor	viscousity	mesh	Grid Spacing(Resolution)						
axie SBPW	SDDW	inviscid	mixed	2.56	2	1.6	1.28	1		
	SDPW		tetrahedra	2.56	2	1.6	1.28	1		
jwb	SBPW	inviscid	tetrahedra	1	0.83	0.7				
	SBPW	BPW inviscid	mixed	2	1.6	1.28	1	0.8	0.64	
zoa-nowini			tetrahedra	2	1.6	1.28	1	0.8		

Ground signature

Multi-Pole & Burgers

AXIE C25D JWB Ground signature Ground signature Ground signature 20 20 20 ---B, H/L=1 ---B, H/L=0.85 ---B, H/L=1 B, H/L=3 15 15 15 B,H/L=2.55 -B, H/L=3 B, H/L=5 MP+B, H/L=0.85 10 10 10 --B, H/L=5 MP+B, H/L=1 MP+B,H/L=2.55 MP+B, H/L=3 5 5 5 ⊿P, Pa ⊿P, Pa ⊿P, Pa MP+B, H/L=5 0 0 0 -5 -5 -5 -10 -10 -10 -15 -15 -15 -20 -20 -20 -50 0 50 100 150 -50 50 100 150 -50 0 50 100 150 0 X(m) X(m) X(m) Loudness Loudness Loudness 90 90 90 -- Bergers -- Bergers --Bergers 85 85 85 --- MultiPole+Bergers MultiPole+Bergers SPL, PLdB SPL, PLdB SPL, PLdB 80 80 80 75 75 75 70 70 70 2 3 5 6 0 2 3 4 5 6 0 2 3 4 5 6 0 1 1 1 4 H/L H/L H/L

AXIE vs C25D vs JWB

All Models

Viscosity : inviscid Mesh : Tetra Resolution AXIE : 100 C25D : 080 JWB : 070 Near field, Z= -99m AXIE : H/L=3 C25D : H/L=3 JWB : H/L=2.55

- Analyzed cases
 - AXIE, JWB, C25D(flow-thorough)
- Limiter function

Limiter function is related to sharpness of near field pressure signature.

Venkatakrishunan limiter : limiter factor; K=1.0, 0.1, 0.01, 0.001

K=0.01 – 1 are almost same results.

Limiter factor(K) is changed if unexpected oscillation is observed.

Mesh type

Mixed and Tetra has similar characteristics.

Mesh resolution

AXIE: 100-160 are almost same.

JWB : 070-100 are almost sane.

C25D : 064-100 are almost same.

• 3 models

It is found that JWB has similar to the low-boom effect of the C25D.