FUN3D Contributions to the Second AIAA Sonic Boom Prediction Workshop (Nearfield CFD)

Look Down Computational Schlieren of C25D Powered Configuration

Mike Park Computational AeroSciences Branch NASA Langley Research Center

Cases

- All workshop grids
 - 0.6 to 56 million node Euler AXIE (5)
 - 6, 11, and 18 million node Euler JWB (3)
 - 3-104 million node Euler C25F (6)
 - 5-138 million node viscous C25F (6)
 - 3-52 million node Euler C25P (5)
 - 5-70 million node viscous C25P (5)

Cases

• Participant grids

- C25F ANSA and Pointwise (S. Cliff)

- C25P ANSA and 3 Pointwise (S. Cliff)

FUN3D

- Node-based solver for mixed-element grids
- Blended upwind and central difference
 - Roe flux function
 - van Albada limiter (frozen)
- Euler and Spalart-Allmaras turbulence model
- Legacy defect correction implicit solution advancement scheme

Resources

- NASA Langley mid-range computing facility

 SGI ICE Altix Cluster
- FUN3D
 - 160-400 core jobs limited by number of free cores and queue sizes
 - Few minutes to a few hours

AXIE Pressure Disturbance

AXIE Pressure Disturbance

.

AXIE FUN3D Iterative Convergence

AXIE FUN3D Continuity Residual h=2.56

Continuity Residual

1E-12
8E-13
6E-13
4E-13
2E-13
0
-2E-13
-4E-13
-6E-13
-8E-13
-1F-12

JWB Pressure Disturbance

JWB Pressure Disturbance

JWB FUN3D Iterative Convergence 10^{1} 10-10⁻³ **Continuity Equation** 10⁻² 10⁻⁵ **T070 T083** T100 10⁻⁹ Euler 10⁻¹¹ CFL=100 10⁻¹³ 10⁻¹⁵ 2000 500 1000 1500 0 Iteration

C25F Pressure Disturbance

C25F Pressure Disturbance

0.01 0.008 0.006 0.004 0.002 0 -0.002 -0.004 -0.006 -0.008 -0.01

C25F FUN3D Mixed-Element RANS-SA 0.02 RANS-SA-WS-Mixed069.8M,R=3,PHI=00 RANS-SA-WS-Mixed036.5M,R=3,PHI=00 RANS-SA-WS-Mixed017.9M,R=3,PHI=00 0.015 RANS-SA-WS-Mixed008.9M,R=3,PHI=00 RANS-SA-WS-Mixed004.8M,R=3,PHI=00 0.01 0.005 dpsr 0 -0.005 -0.01 -0.015 -0.02 <u>–</u> -10 20 30 50 40 0 10 tau

C25F FUN3D RANS-SA Grid Sensitivity

C25P Pressure Disturbance

C25P Pressure Disturbance

dp/pinf

0.01 0.008 0.006 0.004 0.002 0 -0.002 -0.004 -0.006 -0.008 -0.01

FUN3D Error Transport Equation

- Truncation error estimate from the Venditti adjoint adaptation scheme
- Propagated as a source term to complex-valued FUN3D, sBOOM, and ASEL measure
- Impact of estimated discretization error on entire solution and output functionals
- FD-03, CFD Applications, Monday, 10-10:30 AM, Texas 3, "Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshop" by Derlaga, Park, and Rallabhandi

C25F Pressure Disturbance

0.01 0.008 0.006 0.004 0.002 0 -0.002 -0.004 -0.006 -0.008 -0.01

Х

dp/pinf 0.01 0.008 0.006 0.004 0.002 0 -0.002 -0.004 -0.006 -0.008

-0.01

Х

C25F Pressure Disturbance

0.01 0.008 0.006 0.004 0.002 0 -0.002 -0.004 -0.006 -0.008 -0.01

Summary

- Submissions provided for all workshop grids and some participant grids
 - Iterative convergence
 - Nearfield signature variation
- Exactly linearized error transport equations
 - Monday, 10-10:30 AM, Texas 3
 - Truncation error estimate
 - Complex-step FUN3D, sBOOM, ASEL
 - Consistent trends with grid refinement for intermediate sized grids
 - Illustrate the grid sensitivity mechanism of inlet shock reflecting off upper wing and lower horizontal tail