HUNS3D Simulation for the 2nd Sonic Boom Prediction Workshop

Gang WANG, Boping MA, Zehan WANG

School of Aerodynamics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China

> AIAA SciTech 2017, Grapevine, Texas, U.S.A 7th Jan. 2017

Outline

- Summary of cases analyzed
- Numerical Method
- > Test Cases and Computational results
- ➤ Summary

Outline

Summary of cases analyzed Numerical Method Test Cases and Computational results

➤ Summary

Summary of cases analyzed

- All submitted computations using:
 - HUNS3D solver
 - Hybrid viscous mesh/ Euler mixed mesh
 - Central /Entropy-consistent (EC) schemes
 - Spalart-Allmaras (SA) turbulence model

> Test cases

Geometry	Inviscid	Viscous	Provided mesh	Self- generated	
AXIE	\checkmark	~	\checkmark	\checkmark	
JWB		\checkmark		\checkmark	
C25D flowthru		\checkmark		\checkmark	C25D
					flowthru

JWB

Outline

Summary of cases analyzed

Numerical Method

Test Cases and Computational results

➤ Summary

Numerical Method

6/35

- Computational Fluid Dynamic (CFD) Solver
 - Hybrid Unstructured Navier-Stokes 3D (HUNS3D) is used, which is a FORTRAN Code parallized by OpenMP.

Flow Pattern	Inviscid/ Viscous		
Supported Mesh Type	Structured/ unstructured/Hybrid		
Discretization method	Cell-centered finite volume		
Turbulence model	Euler/SA/MSST/Correlation-based γ -Re θ t /DES		
Shock capture schemes	Central/ROE/AUSM series/ Entropy-Consistent/Ecusp		
Spatial accuracy	2 nd order		
Time integration	Runge-Kutta /LU-SGS implicit method		

- Mian, H. H., Wang, G. and Raza, M. A., "Application and Validation of HUNS3D Flow Solver for Aerodynamic Drag Prediction Cases," Applied Sciences and Technology (IBCAST), 2013 10th International Bhurban Conference on IEEE, 2013.
- Wang Gang, Ye Zhengyin. "Mixed Element Type Unstructured Grid Generation and its Application to Viscous Flow Simulation", 24th International congress of aeronautical sciences, Yokohama, Japan, 2004.
- Li CN, Ye Z, Wang G, "Simulation of flow separation at the wing-body junction with different fairings," Journal of Aircraft 2008; 45(1): 258-266

Numerical Method

- Convergence features (on AXIE configuration)
- Solver convergence Criteria: 40000 iterations
- Residual convergence history:
 - Residual drop by 6 orders of magnitude
 - Cl and Cd converged

School of Aerodynamics, Northwestern Polytechnical University, Xi'an, P. R. China

Outline

Summary of cases analyzed

> Numerical Method

> Test Cases and Computational results

➤ Summary

- AXIE Configuration
- Viscous inflated grid

- Axie Configuration
- > Grid information (viscous)

Grid name	Case name	Nodes	Cells
axie_viscous_base.zip	axie-near-Wang- Case_1	4,186,065	6,281,796
axie_viscous_refined1. zip	axie-near-Wang- Case_2	8,152,956	11,668,864
axie_viscous_refined2. zip	axie-near-Wang- Case_3	20,228,695	24,181,761

- Axie Configuration
- > Pressure contour

- Axie Configuration
- > Extracted near-field signature (viscous)

Axie Configuration

➢ Grid information (inviscid)

	Grid name	Case name	Nodes	Cells
workshop provided	axie-inv- mixed-256.cgns	axie-near- Wang-Case_4	646,467	1,381,894
	axie-inv- mixed-200.cgns	axie-near- Wang-Case_5	1,601,681	3,702,826
	axie-inv- mixed-160.cgns	axie-near- Wang-Case_6	5,077,104	12,310,640
Self-generated	axie-inv-mixed- test	-	2,888,525	5,492,686

13/35

- Axie Configuration
- Extracted near-field signature (on workshop provided grid)

Axie Configuration

Extracted near-field signature (on self-generated grid)

15/35

Axie geometry and mesh comparasion

Accurate wall of self-generated gridAccurate wall of workshop provided grid

16/35

- JWB Configuration
- > Viscous grid

JWB Configuration

Grid information

Grid name	Case name	Nodes	Cells
jwb_viscous_hyb rid_ base .zip	jwb-near-Wang- Case_1	6,608,885	12,425,695
jwb_viscous_hyb rid_ refined1 .zip	jwb-near-Wang- Case_2	12,839,826	21,529,795
jwb_viscous_hyb rid_ refined2 .zip	jwb-near-Wang- Case_3	26,417,451	44,437,660

- JWB Configuration
- > Pressure contour

JWB Configuration

JWB Configuration

21/35

School of Aerodynamics, Northwestern Polytechnical University, Xi'an, P. R. China

- JWB Configuration
- **Effects of** *Turbulence model* (h/L=0.85, on refined 1 mesh)

School of Aerodynamics, Northwestern Polytechnical University, Xi'an, P. R. China

- C25d-flowthru Configuration
- Viscous grid

23/35

C25d-flowthru Configuration

Grid information

Grid name	Case name	Nodes	Cells
c25d_viscous_base.tar. gz	c25d-flowthru- near-Wang- Case_1	11,340,201	22,348,632
c25d_viscous_refined1 .tar.gz	c25d-flowthru- near-Wang- Case_2	15,767,383	30,375,923
c25d_viscous_refined2 .tar.gz	c25d-flowthru- near-Wang- Case_3	28,530,775	52,022,490

- C25d-flowthru Configuration
- Pressure contour

- C25d-flowthru Configuration
- Extracted near-field signature (on refined 1 mesh)

- C25d-flowthru Configuration
- **Extracted near-field signature** (h/L=1)

- C25d-flowthru Configuration
- **Extracted near-field signature** (h/L=3)

- C25d-flowthru Configuration
- Effect of Shock capture scheme (h/L=1, on refined 1 mesh)

All Configuration comparasion

> On-track (on grid with cell number approximately 20M)

30/35

All Configuration comparasion

> Off-track

Outline

Summary of cases analyzed

> Numerical Method

Test Cases and Computational results

≻ Summary

- □ All required test cases have been computed
- Mesh affects strongly in near field sonic boom prediction
- □ Advancing-Front method and inflated grid strategy well suited
- Geometry and mesh distribution will cause oscillations
- Turbulence models and shock capture schemes have moderate effects
- **□** Equivalent area method proved simple and effective

- □ Thanks to Mike Park for pointing out our problems and responding our questions.
- **Thanks to Prof. Gecheng ZHA for his advice**
- Thanks to Zhijin LEI for kindly providing beneficial advices and modifying this presentation material.

School of Aeronautics

Northwestern Polytechnical University

Northwestern Polytechnical University, Xi'an, P. R. China

Velocity Magnitude: 0.01 0.33 0.65 0.97 1.29 1.61

Thanks for Your Attention !

AIAA SciTech 2017, Grapevine, Texas, U.S.A 7th Jan. 2017