DLR TAU Simulations for the Second AIAA Sonic Boom Prediction Workshop

Jochen Kirz Ralf Rudnik

Outline

- Flow Solver and Computing platform
- Cases analyzed and Grids used
- Simulation Settings and Flow Solver Convergence
- Simulation Results
- Highlights
- Summary / Conclusions
- Questions / Discussion

Flow Solver and Computing Platform

- DLR TAU Code
 - Unstructured finite-volume
 - Euler, RANS
 - Hybrid grids
 - Backward Euler and Runge-Kutta timestepping
 - Central and upwind schemes (Roe, Van Leer, AUSMDV, AUSMP(W+))
 - 2nd order upwind limiter functions (Barth Jesperson, Venkatakrishnan, SRR)
- C²A²S²E-2 Cluster
 - parallel
 - distributed memory
 - 1 computing node (24 cores) per 300.000 grid nodes

Cases Analyzed and Grids Used

AXIE	JWB	C25D flow through	
axie-inv-mixed-256	jwb-invisc.C100	c25d-flo-inv-mixed-200	c25d-flo-visc-mixed-200
axie-inv-mixed-200	jwb-invisc.C080	c25d-flo-inv-mixed-160	
axie-inv-mixed-160	jwb-invisc.C064	c25d-flo-inv-mixed-128	c25d-flo-visc-mixed-128
axie-inv-mixed-128		c25d-flo-inv-mixed-100	c25d-flo-visc-mixed-100
axie-inv-mixed-100		c25d-flo-inv-mixed-080	c25d-flo-visc-mixed-080
		c25d-flo-inv-mixed-064	c25d-flo-visc-mixed-064
axie-inv-tet-256	jwb-inv-tet-100	c25d-flo-inv-tet-200	c25d-flo-visc-tet-200
axie-inv-tet-200	jwb-inv-tet-083	c25d-flo-inv-tet-160	
axie-inv-tet-160	jwb-inv-tet-070	c25d-flo-inv-tet-128	c25d-flo-visc-tet-128
axie-inv-tet-128		c25d-flo-inv-tet-100	c25d-flo-visc-tet-100
axie-inv-tet-100		c25d-flo-inv-tet-080	c25d-flo-visc-tet-080

black: workshop-provided grids

blue: CENTAUR-generated grids

Cases Analyzed and Grids Used CENTAUR-generated Grids for JWB case

- Hybrid Euler grids
 - Unaligned tetrahedrons in cylindrical inner part
 - Mach cone aligned hexahedrons in farfield

Cases Analyzed and Grids Used CENTAUR-generated Grids for JWB case

Surface resolution (triangles) of coarse CENTAUR grid similar to coarse workshop-provided grid

Cases Analyzed and Grids Used CENTAUR-generated Grids

- Hybrid Euler grids
 - Unaligned tetrahedrons in cylindrical inner part
 - Mach cone aligned hexahedrons in farfield
- Series of uniformly refined grids

 Surface resolution (triangles) of coarse CENTAUR grid similar to coarse workshop-provided grid

Grid	Nodes	Hexahedrons	Tetrahedrons
jwb-invisc.C100	8,122,061	4,268,264	20,694,950
jwb-invisc.C080	15,110,113	8,412,624	36,385,888
jwb-invisc.C064	29,292,032	16,877,552	68,351,196
jwb-inv-tet-100	6,491,425	-	37,397,159

Simulation Settings and Flow Solver Convergence Typical Convergence History (jwb-inv-tet-070)

10⁰ Euler / SA in negative formulation for viscous 10⁻¹ calculations • LUSGS 10⁻² AUSMDV 2nd order Venkatakrishnan limiter Residual [-] Green Gauss reconstruction of 10-4 gradients 10⁻⁵ Mach and CFL ramping Convergence criteria 10⁻⁶ 15000 Iterations 10⁻⁷ 5000 10000 15000

0

Iteration [-]

Simulation Settings and Flow Solver Convergence Typical Convergence History (jwb-inv-tet-070)

- Euler / SA in negative formulation for viscous calculations
- LUSGS
- AUSMDV 2nd order
- Venkatakrishnan limiter
- Green Gauss reconstruction of gradients
- Mach and CFL ramping
- Convergence criteria
 15000 Iterations

Outline

- Flow Solver and Computing platform
- Cases analyzed and Grids used
- Simulation Settings and Flow Solver Convergence
- Simulation Results
- Highlights
- Summary / Conclusions
- Questions / Discussion

Results AXIE

Pressure Contours and near field signatures

DLF

Results AXIE Signature Convergence

- No obvious convergence with grid resolution
- Positions of the shocks and expansions are similar for the medium to fine grids, but vary for the coarsest grids
- Tetrahedral grids result in higher peak pressures

Results JWB

Pressure Contours and near field signatures

Results JWB Signature Convergence

- Smooth pressure rise for the provided grids
- Slight expansions at the pressure rise for the generated grids
- Positions of shocks and expansions agree for all grids
- CENTAUR grids lead to higher peak pressures, especially in the aft part of the signature

Results C25D flow-through Pressure Contours and near field signatures

Results C25D flow-through Signature Convergence

 Fine grids lead to stronger shocks and expansions than coarse grids

Results C25D flow-through Viscous in comparison to inviscid calculations

- Fine grids lead to stronger shocks and expansions than coarse grids
- Influence of viscosity stronger than influence of grid resolution

- Unphysical pressures for fine tetrahedrons with large aspect ratio in combination with least square reconstruction of gradients (red line)
- Unphysical pressures for large H/L at inflow, outflow and farfield boundary conditions (blue line)

Unphysical pressures for fine tetrahedrons with large aspect ratio in combination with least square reconstruction of gradients

- Only appearing on purely tetrahedral grids
- Most significant on fine grids
- Independent of chosen upwind scheme and limiter

Example: jwb_R0003_jwb-inv-tet-070 (least square)

Unphysical pressures for fine tetrahedrons with large aspect ratio in combination with least square reconstruction of gradients

- Only appearing on purely tetrahedral grids
- Most significant on fine grids
- Independent of chosen upwind scheme and limiter

→ Resolved before submission by switching to Green Gauss reconstruction of gradients

Example: jwb_R0103_jwb-inv-tet-070 (Green Gauss)

Highlights Unphysical pressures for large H/L at inflow, outflow and farfield boundary conditions

- The strength of the error follows clear patterns:
 - purely tetrahedral > mixed-element
 - viscous > inviscid
 - coarse > fine
 - for off-track angles up to 50 degrees the effect is lower but still existent

Example: jwb_R0026_c25d-flo-visc-tet-200 (old FF)

Highlights Unphysical pressures for large H/L at inflow, outflow and farfield boundary conditions

- The strength of the error follows clear patterns:
 - purely tetrahedral > mixed-element
 - viscous > inviscid
 - coarse > fine
 - for off-track angles up to 50 degrees the effect is lower but still existent
- \rightarrow Contacted by the committee
- →Solution improved by changing the inflow, outflow and farfield boundary conditions, not completely resolved
 →Work-around by increasing the farfield radius

Example: jwb_R1026_c25d-flo-visc-tet-200 (new FF)

Summary and Conclusions

- Positions of shocks and expansions
 - Similar for grids with medium to fine resolution
 - Different for very coarse grids
- Strength of shocks and expansions
 - Higher for fine grids compared to coarse grids
 - Higher for purely tetrahedral grids compared to mixed-element grids
- Influence of grid setup (tet/mixed) stronger than influence of grid resolution
- Influence of viscosity stronger than influence of grid setup
- Strong influence of numerical settings especially for tetrahedral farfields

 \rightarrow The prediction of near-field pressure signatures with the DLR TAU Code is possible

 \rightarrow Understanding of the origin of numerical errors in the farfield can be improved further

Questions/Discussion

Backup Slides

Knowledge for Tomorrow

Normalization

Results AXIE Signatures H/L=1 (new FF)

Results AXIE Signatures H/L=3 (new FF)

Results AXIE Signatures H/L=3 (new FF)

Mesh Induced Shocks and Expansions axie_R0101_axie-inv-mixed-256

Results JWB

Pressure Contours and near field signatures

Results JWB Signature Convergence

Results C25D flow-through Pressure Contours and near field signatures

Results C25D flow-through Signature Convergence

Inflow and Farfield Boundary Condition Changes

- Supersonic inflow/outflow
 - Compute boundary fluxes with approximate Riemann solver instead of setting conservative variables at the boundary
 - The gradients of all variables are set to zero in the direction normal to the boundary
- Farfield
 - The farfield fluxes are evaluated via a characteristic method that is in line with the interior face-flux computation.
 - The corresponding flux parameters are inherited from the central, matrix-dissipative scheme
- Convergence improved as side effect (more robust start, significantly less iterations needed and residual lowered by 1-2 orders of magnitude)

Highlights Unphysical pressures for large H/L at inflow, outflow and farfield boundary conditions

Highlights Unphysical pressures for large H/L at inflow, outflow and farfield boundary conditions

