

Computational and Experimental Assessment of Models for the First AIAA Sonic Boom Prediction Workshop

Susan E. Cliff Applied Modeling & Simulation Branch Ames Research Center

Applied Modeling & Simulation Seminar Series February 4, 2014

AIAA 2014-0560 by Cliff S., Durston D., Elmiligui A., Jensen J., and Chan W.

Outline

- Sonic Boom Workshop
 - Purpose and Objectives
 - Study Configurations

- Wind Tunnel Tests
 - Overview of facility and Instrumentation
 - Test Techniques
- Computational Tools
- CFD/Experiment Comparisons
 - Ground-level signatures and PLdB for transport model
- Summary

Sonic Boom Workshop

- NASA
- 1st AIAA Sonic Boom Prediction Workshop held on January 11, 2014
- Purposes
 - Forum for industry & international participation
 - Evaluate and compare computational grids and solutions
 - Obtain better understanding of best practices in CFD
- Common geometries and meshes were distributed
 - Lockheed Martin Seeb-ALR (aft-lift relaxation)
 - 69° Delta Wing-Body
 - Lockheed Martin 1021 low-boom supersonic transport
- Tests were conducted in NASA Ames 9x7 Supersonic Wind Tunnel
- USM3D (submitted) and OVERFLOW results
- AIAA 2014-0560 provides several other conditions (*α*, *h*) with computational and experimental comparisons

Lockheed Martin Seeb-ALR

- Calibration Model for RF1 Rail
 - 8" flat forward signature
 - 2" flat aft signature
 - A_e body for low boom and drag
 - Modified aft signature of "Seeb"

Ames 69° Delta Wing-Body

- Legacy configuration for sonic
 boom measurement / analyses
 - FAP Sonic Boom Workshop 2008
 - CFD comparisons in 1991
 - Tested in 1973

69° Delta Wing-body
Length = 6.9"
Span = 2.72"

NASA

Lockheed Martin 1021 Low-Boom Model

- 1021 is N+2 supersonic transport configuration from Phase I of LM NRA with High Speed Project
 - Mach 1.6 cruise at 50,000 ft
 - 230 feet length
 - 82-100 passengers
- 0.8% scale model installed in 9x7 wind tunnel

1021 Model Details

Ames 9- by 7-Foot Supersonic Wind Tunnel

- Lockheed Phase I and II Tests conducted in Oct 2011 and Oct 2012
- Mach 1.6 and 1.7 (Mach set by sliding nozzle block/floor)
- Reynolds number 4.3x10⁶ per foot
- Reflection Factor 1 (RF1) pressure rail used for sonic boom data

Primary Test Technique Differences

	Phase I	Phase II				
	 30 second duration data runs 	6 second duration data runs				
	 Full length pressure tubing 4.5 second lag time 	 Reduced length pressure tubing 2.0 second lag time 				
	 Humidity 230 ppm, < 4 ppm, avg 2 	 Humidity 250 ppm, < 10 ppm, avg 4 				
	• PT < 0.5 psf	 PT < 2.0 psf 				
	RF1 on forward window blank	RF1 on forward & aft window blanks				
(ΔP/P)data - (ΔP/P)ref	0.1 runs 333-358, ref 359 +/- σ 30 sec data, 30 sec ref 2 sec data, 30 sec ref 2 sec data, 2 sec ref 0.06					
	0.04					
	0.02					
	-0.02	-0.02 - 30 sec data, 30 sec ref				
	-130 -120 -110 -100 -90 -80	-125 -120 -115 -110 -105 -100 -95 -90				
	aligned X, inches	aligned X, inches				

Simplified Run Matrix AIAA 2014-0560 Paper

- Experimental data plots (avg. and individual)
- Repeat data plots
- Experiment overlaid with CFD

	Configuration	М	α	h	φ	Sweep	Runs	Exp. Fig.	CFD Fig.		
	1021 with all nacelles, blade strut (Phase I)	1.6	2.09	20.7	-2.37	Х	333_358-359	14	33a	ר ר	
		1.6	1.95	20.6	-4.21	X	390_415-387			}	
		1.6	2.10	20.8	-0.75	X	939_964-938				
•		1.6	2.29	20.7	-0.5	X	774_799-828	15	33h	`	
		1.6	2.46	20.8	-0.6	X	800_825-828	10		✓ () :::(
		1.6	2.32	31.3	-0.6	X	829_854-876	16	33c		
		1.6	2.51	31.4	-0.7	X	855_874-876				
		1.6	2.31	20.8	24.6	X	748_773-828	17	34a	<u>}</u>	
		1.6	2.47	20.8	20.3	X	877_902-903	17	514	<u>_</u>	
		1.6	2.30	20.8	47.8	X	696_721-828	18	34b	<u>}</u>	
		1.6	2.45	20.9	47.6	X	722_747-828	10	5.10	<u> </u>	
		1.6	2.18	24.6	0.12	Z	3728_3776-3777				
	1021 - 141 - 11 11	1.6	1.97	31.8	0.25	X	3698_3715-3727				
	1021 with all nacelles, blade strut	1.6	2.14	42.1	0.0	X	3801_3839-3840	19	N/A	Additional data	
	(Phase II)	1.6	1.84	48.6	1.08	Z	272_304-271	17			
		1.6	2.03	62.8	0.53	Z	247_270-271				
		1.6	2.12	69.6	0.4	X	160_200-204			J	
	Sach ALD	1.6	-0.29	20.6	0.5	X	195_219-221	21	350		
	Seeb-ALR (Phase I)	1.6	-0.27	20.6	0.5	Х	553_578-580	21	55a		
		1.6	-0.27	31.2	0.3	X	581_606-608	22	35b		
		1.6	-0.06	56.01	0.41	Ζ	845_900-901	22	350		
	Seed-ALR (Phase II)	1.6	-0.05	56.02	0.27	Ζ	948_1003-1004	23	550	≻ Additional data	
		1.6	-0.02	70.02	0.22	X	794_832-834	24	35d		
	69° Delta Wing-Body (Phase II)	1.7	0.24	24.86	0.16	X	5598_5637-5638				
		1.7	-0.20	24.75	29.97	X	5530_5549-5550	25	36		
		1.7	-0.18	24.75	60.06	X	5551_5570-5571	25			
		1.7	-0.18	24.69	89.87	Х	5572_5591-5592				
		1.7	-0.06	31.64	0.60	X	5240_5274-5275				
		1.7	-0.17	31.74	29.94	Х	5284_5301-5275	27	37		
		1.7	-0.22	31.56	59.74	X	5310_5327-5328	27			
		1.7	-0.20	31.61	89.96	X	5336_5353-5354				
		1.7	0.71	21.33	0.253	X	5641_5680-5638	28	38	> Additional data	
		1.7	2.37	25.21	0.334	X	5469_5488-5489				
		1.7	3.90	25.49	0.687	X	5448_5467-5468				
		1.7	1.75	32.10	0.378	X	5405_5424-5425	29	30		
		1.7	3.10	32.33	0.236	X	5426_5445-5446	2)	57	10	

Data Acquisition Using Pressure Rail

- Data run: shocks on rail
- Reference run taken with model shocks off rail (or at least downstream of where model shocks will be)
- Model signature is *difference* of reference run from the data run

Layout for LM 1021 Model

- NASA
- X sweeps used to acquire multiple (26) signatures for spatial averaging
- Sweeps used for 1021 model:
 - 16" translation at height of 31.8" above rail
 - 4" translation at height of 21.2" above rail

Signature Averaging from X-Sweeps

- Multiple signatures acquired
- Tunnel ambient distortions evident in individual signatures
- Averaging reduces tunnel distortions

NASA

Tunnel Test Section Flow

Shock Rounding Sources

- model vibration
- tunnel shocks (moving)
- tunnel Stream angle
- discrete rail orifice spacing
- humidity

Computational Tools: NASA Codes

	USM3D		OVERFLOW 2.2
•	Unstructured tetrahedra, cell-centered, finite volume	•	Structured overset, vertex based, finite difference
•	Euler & Navier-Stokes	•	Navier-Stokes
•	Steady state simulations	•	Steady state simulations
•	Upwind spatial discretization	•	Central & upwind spatial discretization
•	Standard & characteristic based BC's	•	Standard & characteristic based BC's
•	Spalart-Allmaras turbulence model	•	Spalart-Allmaras turbulence model

Computational Tools: USM3D Meshes

Mach Cone Aligned Prism (MCAP) meshes for 1021 model

Computational Tools: Overset Meshes

OVERFLOW Overset Meshes for 1021 Model

Front View

Symmetry Plane View

Seeb-ALR Mach Line Contours on C_P

- Mach = 1.6, α = 0°, Re = 6.42x10⁶
- USM3D turbulent solution

Seeb-ALR CFD Comparisons Mach = 1.6, α = 0°, Re = 6.42x10⁶

Seeb-ALR CFD Comparisons Mach = 1.6, α = 0°, Re = 6.42x10⁶

Seeb-ALR Experimental Data Mach = 1.6, α = 0°, Re = 6.42x10⁶

Seeb-ALR CFD vs. Experiment: M=1.6, α =0°

Seeb-ALR Aft Signature Discrepancies

69° Delta Wing-Body Mach Line Contours on C

- Mach = 1.7, α = 0°, Re = 2.43x10⁶
- USM3D turbulent solution

69° Delta Wing-Body CFD Results: M=1.7, α =0°

69° Delta Wing-Body Experimental Data

NAS

- On and Off-track
- Mach = 1.7, α = 0°, h [24.7 24.9] in, Re = 2.43x10⁶

69° Delta Wing-Body Layout

- Inline reference runs
- Reference runs on RF1 rail
- Signature ranges were truncated to eliminate reference run contamination

69° Delta Wing, CFD vs. Experiment: M=1.7 α =0

69° Delta Wing-Body Experimental Data

- On and Off-track
- Mach = 1.7, α = 0°, h [31.6 31.7] in, Re = 2.43x10⁶

69° Delta Wing, CFD vs. Experiment: M=1.7 α =0

Waterfall of Rail Data & 1973 Probe Data

69° Delta Wing-Body Data at Lifting Conditions

69° Delta Wing-Body Data at Lifting Conditions

69° Delta Wing-Body Data at Lifting Conditions

Euler Grid Refinement on Delta Wing-Body

Euler Grid Refinement on Delta Wing-Body Nose

Euler Grid Convergence on Delta Wing-Body

LM 1021 Mach Line Contours on C_P

NASA

- Mach = 1.6, α = 2.1°, Re = 8.10x10⁶
- USM3D turbulent solution

1021 Experimental Data, Height Variation Effect

- Mach=1.6, α [1.84°: 2.18°]
- Shock peaks and overall pressure levels reduce with height above rail
- General increase in individual signature variation with height
- Significantly more variation in individual signatures with rail on aft window blank
 - Greater height, more distance for shock to travel
 - Flow field in aft part of test section may result in more distortions

On-Track Signatures for 1021 Model, M=1.6

Extrapolated Experimental Data via SBOOM

Extrapolated USM3D to Ground via SBOOM

- Near field USM3D taken from 20.7 and 31.3 inches
- Mach 1.6, α =2.1°,2.3°, 2.5°

Loudness Level Predictions: USM3D & Experiment

 $h = 21, \alpha [1.95 - 2.10]$ degrees h = 2

 $h = 21, \alpha [2.29 - 2.50]$ degrees

$h = 31, \alpha [2.30 - 2.51]$ degrees

NASA

Off-Track Signatures for 1021 Model

- Individual signatures show little variation, so averages are of good quality
- Very little differences due to small α changes
- off-track signatures show different characteristic shapes because of the different angle from the model

Off-Track, 1021, CFD vs. Exp: M=1.6 α=2.3°, 2.5

- Experiment average α =2.5°, *Re* = 8.10x10⁶
- USM3D shown at α =2.3° and 2.5°
- Excellent comparisons, but CFD has more rounded shocks than experiment

Long-term repeatability 1021 model, M=1.6

- Experimental data at difference angles of attack
- Differences are attributed to the angle-of-attack differences
 - Wing overpressures consistent with alpha changes

LM 1021 Model Meshes

AFLR3 and BG

Pointwise and MCAP

V-Grid and MCAP

Mesh Effects for 1021 Model M=1.6, α=2.1°, Re=8.10x10⁶

Summary

- Experimental pressure signatures for three Workshop geometries were provided
- USM3D and OVERFLOW comparisons with experiment were provided for all data (on and off-track)
- Numerical simulations are in good agreement with wind tunnel data
- Limitations of experimental testing discussed
- Mach cone alignment and stretching along Mach rays are important for accurate sonic boom computations for unstructured or structured overset methods
- Meshing best practices are emerging from the 1st AIAA Sonic Boom Prediction Workshop

Acknowledgments

- AIAA 2014-0560 Paper Co-authors
 Don Durston
 Alaa Elmiligui
 James Jensen
 - William Chan
- NASA Fundamental Aeronautics Program High Speed Project
- Sonic Boom Workshop Committee Mike Park Kendrick Waithe
- Lockheed Martin
 John Morgenstern
 Mike Buonanno
- NASA Support
 Ed Parlette Norma Farr
 Michael Aftosmis Jeff Housman
- NASA 9x7 Wind Tunnel Test Crew
 Maureen Delgado

Sudheer Nayani Shayan Moini-Yekta

Questions?

