

AIAA 2014-0558

Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop

Michael J. Aftosmis Applied Modeling & Simulations Branch NASA Ames Research Center Moffett Field, CA 94035 michael.aftosmis@nasa.gov

Marian Nemec Science and Technology Corp. Applied Modeling & Simulations Branch Moffett Field, CA 94035 marian.nemec@nasa.gov

13-17 Jan 2014, National Harbor, Maryland, USA

Introduction - Cart3D

Meshing:

- · Multi-level Cartesian mesh with embedded boundaries
- Insensitive to geometric complexity
- Adjoint-based mesh adaptation

Inviscid flow solver

- Monotone second-order upwind method
- Tensor slope limiters preserve k-exactness
- Runge-Kutta with multigrid acceleration
- Domain decomposition for scalability

Output-based mesh adaptation

- Duality-preserving discrete adjoint
- Provides output correction & error estimate
- · Adjoint-based mesh refinement using remaining error

Broad use throughout NASA, US Government, industry and academia

Goal: Accurate prediction of near/mid-field pressure signatures

Boom problems with Cartesian Mesh Methods

Goal: Accurate prediction of near/mid-field pressure signatures

 Mesh adaptation to pressure sensor output

$$\mathcal{I}_{\text{sensor}} = \int_0^L \frac{(p - p_\infty)^2}{p_\infty} dl$$

Boom problems with Cartesian Mesh Methods

Goal: Accurate prediction of near/mid-field pressure signatures

 Mesh adaptation to pressure sensor output

$$\mathcal{J}_{\text{sensor}} = \int_0^L \frac{(p - p_\infty)^2}{p_\infty} dt$$

- Mesh rotation to ~Mach angle
- Mesh stretching along dominant direction of wave propagation
- See: AIAA 2008-0725, 6593 & AIAA 2013-0649

Assessing Mesh Convergence

NASA

F

Adjoint-based error-estimation and mesh adaptation

- $U_H \rightarrow U_h$
- The output asymptotically approaches its true value as the mesh is refined from $H \rightarrow h$
- Adjoint Correction: The adjoint provides a correction which prediccts the value of the solution on the next mesh *J*(*U*_{*h*})
- |∆J| vanishes with convergence

Assessing Mesh Convergence

Adjoint-based error-estimation and mesh adaptation

• The output asymptotically approaches its true value as the mesh is refined from $H \rightarrow h$

Assessing Mesh Convergence

Adjoint-based error-estimation and mesh adaptation

- |ΔJ| vanishes with convergence
- Error Estimate: The adjoint provides an estimate of the error remaining in the functional which sharpens with mesh convergence
- Asymptotic convergence appears linear on log-log paper
- The error estimate should bound $|\Delta J|$

7

8

Nomenclature

Cylindrical coordinates used for sonic boom

- *x* : Distance along sensor (axial distance)
- h: Distance from axis (radius)
- Φ : Off-track angle (azimuth)

Results and Investigations

11

For each model

- Simulation results and computational resources
- Mesh & Error Convergence
- Investigations

Seeb-ALR

Lockheed Martin LM 1021 Tri-Jet 69° Delta

Wing Body

Results and Investigations

Seeb-ALR: Mesh Convergence

Pressure signatures largely converged by 6th adapt cycle. - even at 42 in.

· Additional mesh resolution only sharpening shocks

Seeb-ALR: Mesh Convergence

NASA

17

- Results at 7th adaptation submitted to workshop
- · Perform 2 more adaptations to assess degree of mesh convergence

Seeb-ALR: Mesh Convergence

- Results at 7th adaptation submitted to workshop
- · Perform 2 more adaptations to assess degree of mesh convergence

Seeb-ALR: Data Comparison

Comparison with linear theory, $M_{\infty} = 1.6$, $\alpha = 0^{\circ}$

· Code-to-Code comparison used before exp. data was available

Seeb-ALR: Data Comparison

21

21

Comparison with experimental data, $M_{\infty} = 1.6$, $\alpha = 0^{\circ}$

- Closest data at $h \approx 20.6$ in., $\alpha = -0.3^{\circ}$, $\beta = -0.3^{\circ}$
- Excellent agreement in peaks and on flat-top, some differences in expansion

Seeb-ALR: Data Comparison

Comparison with experimental data, $M_{\infty} = 1.6$, $\alpha = 0^{\circ}$

- Closest data at $h \approx 20.6$ in., $\alpha = -0.3^{\circ}$, $\beta = -0.3^{\circ}$
- Excellent agreement in peaks and on flat-top, some differences in expansion

Seeb-ALR: Data Comparison

Seeb-ALR: Data Comparison

Comparison with experimental data, $M_{\infty} = 1.6$, $\alpha = 0^{\circ}$

- Closest data at $h \approx 20.6$ in., $\alpha = -0.3^{\circ}$, $\beta = -0.3^{\circ}$
- Excellent agreement in peaks and on flat-top, some differences in expansion

Seeb-ALR: Data Comparison

Comparison with experimental data, $M_{\infty} = 1.6$, $\alpha = 0^{\circ}$

- + Closest data at $\mathit{h}\approx20.6\,\text{in.,}\,\alpha=\text{-}0.3^\circ,\,\beta=\text{-}0.3^\circ$
- Excellent agreement in peaks and on flat-top, some differences in expansion

Seeb-ALR: Data Comparison

Simulation with Seeb-ALR + pressure rail + tunnel floor Mid-traverse location for data @ h = 20.6 in.

Seeb-ALR: Data Comparison

Simulation with Seeb-ALR + pressure rail + tunnel floor Mid-traverse location for data @ h = 20.6 in.

Seeb-ALR: Data Comparison

Simulation with Seeb-ALR + pressure rail + tunnel floor Mid-traverse location for data @ h = 20.6 in.

Error-estimate bounds update |ΔJ|

Very good convergence

· Remaining error converges asymptotically

36

Functional converges

· Correction leads functional

Adjoint Correction vanishes

 $\Phi = 0^{\circ}$

30°

37

15.9 M cells

Distance Along Sensor (inches)

15.3 M cells

 $\Phi = 90^\circ$

35

60

y y

69° Delta Wing Body: Signatures @ 31.8 in

38

LM 1021: Conditions

Extracted signatures at 30 locations

- *h* = {1.64, 2.65, 3.50, 5.83, 8.39} ft
- $\Phi = \{0^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}\}$
- Single simulation for all 30 signaturesNet functional is combination of 30 sensors

$$\mathcal{J} = \sum_{i=1}^{M} w_i \mathcal{J}_i \quad \text{with} \\ w_i = \frac{h_i}{L_{\text{ref}}} (1 + \frac{4}{\sqrt{2}} \sin \Phi_i)$$

Weighting accounts for

- Decrease in signal strength w/ increasing \boldsymbol{h}
- Increase in resolution requirements with increasing $\boldsymbol{\Phi}$
- Goal is to equilibrate contributions of each sensor to the net functional

57M cells

Isobars

Surprising, since comparisons with RANS at flight Reynolds number was much better!

54

LM 1021: Investigation of On-track Discrepancy

LM 1021: Investigation of On-track Discrepancy

LM 1021: Investigation of On-track Discrepancy

LM 1021: Investigation of On-track Discrepancy

ancy

- · Adjoint tells us where to look ...
- · Investigate physics of tunnel flow
- · Viscous results from USM3D
- Tunnel ReL is ~100x lower than flight
- Boundary layer extends to nacelle

LM 1021: Investigation of On-track Discrepancy

- Adjoint tells us where to look...
- Investigate physics of tunnel flow

58

LM 1021: Investigation of On-track Discrepancy

- Compare viscous and inviscid
- Boundary layer extends to nacelle
- · Inviscid has supersonic flow between underside of wing and nacelle
- · Inviscid shock is delayed (oblique)
- 2nd peak comes from pylon

Summary

- Presented results for SEEB-ALR, DWB and LM 1021 using inviscid Cartesian method with
 - · Automated meshing & adjoint-driven adaptation used for all meshing
 - Presented evidence of mesh convergence
 - (1) Pressure signature
 - (2) Output Functional
 - (3) Adjoint correction and error estimate
 - Computational resources
 - Seeb-ALR: ~1hr on a quad-core laptop in ~3.6 Gb
 - LM 1021: Under 2.5hrs on 96 cores in 80 Gb
- Investigations
- SEEB-ALR:
 - Showed that differences in main expansion are likely due to influence of rail leadingedge compression impacting shoulder of model
 - Results are consistent w/ earlier studies
- LM 1021:
 - Good agreement off-track
 - Low tunnel Reynolds number results in differences in on-track signal
 - Showed a powerful technique using the adjoint-solver to trace specific regions of the signature to particular regions of the surface geometry and near-body flow

63

Thanks!

- Fundamental Aeronautics High Speed Project for support & leadership
- Workshop Organizing committee
- Susan Cliff, Don Durston, David Rodriguez and Mathias Wintzer

NASA

Seeb-ALR: Data Comparison

Comparison with experimental data, $M_{\infty} = 1.6$, $\alpha = 0^{\circ}$

Backup

69° DWB - Tunnel Conditions

Tunnel Runs	Reference Run	M∞	α	Φ	Altitude, h
5598-5637	#5638	1.7	0.24	0.16°	24.86 in.
5530-5549	#5550	1.7	-0.20	29.97°	24.75 in.
5551-5570	#5571	1.7	-0.18	60.06°	24.75 in.
5572-5591	#5592	1.7	-0.18	89.87°	24.69 in.
5240-5274	#5275	1.7	-0.06	0.60°	31.64 in.
5284-5301	#5275	1.7	-0.17	29.94°	31.74 in.
5310-5327	#5328	1.7	-0.22	59.74°	31.56 in.
5336-5354	#5354	1.7	-0.20	89.96°	31.61 in.

Backup

69° DWB - Signature Convergence

