First AIAA Sonic Boom Prediction Workshop Summary

Mike Park Computational AeroSciences Branch NASA Langley Research Center

SEEB-ALR

 Axisymmetric body designed by Lockheed Martin for the validation of a flat-top signature design method

- Seebass and George with aft lift relaxation

- 18in long, examining at H=21.2in, 42.0in
- Mach 1.6

- 6.9 inches long
- Mach 1.7, zero degrees angle of attack

Tecplot Extraction Macro

- Consistent method to extract signatures from a volume solution (available measurements are bold)
 - SEEB-ALR (18in length)
 - Centerline H=21.2in and 42.0in
 - Delta Wing Body (6.9in length)
 - Centerline H=0.5in and 21.2in
 - 0, 30, 60, and 90 degree off-track H=24.8in
 - 0, 30, 60, and 90 degree off-track H=31.8in

Data Processing and Quality

- Received signatures via FTP or email
- Some were converted to plain text, scaled, or reformatted
- Plotted
- Contacted participants for clarification when
 - Incorrect location or incomplete signature
 - Significant differences between submissions of same participant

Method

- Impartially compare signatures by uniform application of
 - Loudness measures
 - Validation metrics

Statistical Method

- Goal is to identify "different" results, not "correct" or "wrong"
- Median +/- (coverage factor)*(std. dev.)

- Assume a uniform distribution, sqrt(3)

- Small sample size with correlated results (same person, same code, refined grids)
- Used by other workshops

Expected Grid Convergence

 Consistent methods should approach a value as the grid is refined to "zero"

SEEB-ALR Submissions

# Group	Phys	Туре	Grid	ControlVol	# Group	Phys	Туре	Grid	ControlVol
1 A	Euler	Struct	S1	7323648	31 E	Euler	Tet	T156	1165851
2 A	Euler	Struct	S2	915456	32 E	Euler	Tet	T200	674734
3 A	Euler	Struct	S3	114432	33 F	Euler	Tet	T100	30647394
4 A	Euler	Struct	S4	14304	34 F	Euler	Tet	T156	6662284
5 A	Euler	Mixed	M080	10159421	35 F	Euler	Tet	T200	3840249
6 A	Euler	Mixed	M100	5252466	36 G	Euler	Struct	Fixed	7323648
7 A	Euler	Mixed	M125	2537977	37 H	Euler	Mixed	M080	10159421
8 A	Euler	Mixed	M156	1165851	38 H	Euler	Mixed	M100	5252466
9 A	Euler	Mixed	M200	674734	39 H	Euler	Mixed	M156	1165851
10 A	Euler	Tet	T080	10159421	40 H	Euler	Mixed	M200	674734
11 A	Euler	Tet	T100	5252466	411	Linear	Linear	Linear	1
12 A	Euler	Tet	T125	2537977	42 J	Euler	Mixed	M080	27865176
13 A	Euler	Tet	T156	1165851	43 J	Euler	Mixed	M100	14325194
14 A	Euler	Tet	T200	674734	44 J	Euler	Mixed	M200	1793549
15 B	Euler	Tet	VGRID	21519091	45 J	Euler	Struct	S1	7323648
16 C	Euler	Tet	T100	30647394	46 J	Euler	Overset	Fixed	27646000
17 C	Euler	Tet	T156	6662284	47 K	Euler	Struct	S1	7986107
18 C	Euler	Tet	T200	3840249	48 L	Euler	Mixed	M100	10159421
19 C	Euler	Tet	PW/MCAP	2236059	49 L	Euler	Mixed	M125	5252466
20 C	Laminar	Tet	PW/MCAP	6196118	50 L	Euler	Mixed	M156	1165851
21 C	SA	Tet	PW/MCAP	6196118	51 L	Euler	Mixed	M200	674734
22 D	Euler	Tet	Adapted-Adj	208280	52 M	Euler	Cart	Adapted-Adj	2012184
23 D	Euler	Tet	Adapted-LP	875511	53 N	Euler	Cart	Fixed	11147363
24 D	Euler	Tet	T080	10159421	54 N	Euler	Overset	PW	26309760
25 D	Euler	Tet	T100	5252466	55 O	Euler	Hybrid	Fixed	73000000
26 D	Euler	Tet	T156	1165851	56 P	Euler	Cart	Fixed	18096942
27 D	Euler	Tet	T200	674734	57 Q	SA	Struct	Gridgen	2000000
28 E	Euler	Tet	T080	10159421	58 R	Euler	Overset	Fixed	21800000
29 E	Euler	Tet	T100	5252466	59 R	SA	Overset	Fixed	21800000
30 E	Euler	Tet	T125	2537977	60 R	Euler	Struct	Axi	330000
					61 R	SST	Struct	Axi	330000

SEEB-ALR Perceived Level

- Examine the median signature with signatures identified as different
 - Statistics of PL
 - Convergence of PL with grid refinement
 - Change in PL with extraction location

SEEB-ALR Validation Metric

- Examine the wind tunnel measurement with signatures identified as different
 - Convergence of the validation metric with grid refinement
 - Largest and smallest validation metric

SEEB-ALR

- Outliers in PL are often outliers in the validation metric
 - These outliers generally had higher flat top pressure and lower expansion pressure than median
- The larger extraction distance was quieter in PL amongst outliers
- Laminar (20C) and SA (21C) had the smallest validation metric

SEEB-ALR

- Eight of ten grid refinement submissions appear to be heading to same value near median
- 24D-27D appear to be heading to a different PL and validation metric than others with grid refinement
- 16C does not follow the trends of the 17C and 18C with grid refinement
- 28E-32E appear to be heading to the same value as the collective, but less smoothly

Delta Wing Body Submissions

# Group	Phys	Туре	Grid	ControlVol	# Group	Phys	Туре	Grid	ControlVol
1 A	Euler	Struct	S1	10141696	30 F	Euler	Tet	T200	4056575
2 A	Euler	Struct	S2	1267712	31 F	Euler	Struct	S1	10141696
3 A	Euler	Struct	S3	158464	32 G	Euler	Struct	Gridgen	9848768
4 A	Euler	Struct	S4	19808	33 H	Euler	Tet	Adapted-Adj	229000
5 A	Euler	Mixed	M100	5363065	34 H	Euler	Tet	Adapted	1197548
6 A	Euler	Mixed	M125	2742341	35 H	Euler	Mixed	M100	5363065
7 A	Euler	Mixed	M156	1411515	36 H	Euler	Mixed	M125	2742341
8 A	Euler	Mixed	M200	695709	37 H	Euler	Mixed	M156	1411515
9 A	Euler	Tet	T100	5363065	38 H	Euler	Mixed	M200	695709
10 A	Euler	Tet	T125	2742341	39 J	Euler	Struct	S1	10141696
11 A	Euler	Tet	T156	1411515	40 J	Euler	Overset	Fixed	27646000
12 A	Euler	Tet	T200	695709	41 J	Euler	Mixed	M100	22423283
13 B	Euler	Tet	VGRID	16700946	42 J	Euler	Mixed	M125	11451499
14 C	Euler	Tet	T125	16191339	43 J	Euler	Mixed	M156	5877312
15 C	Euler	Tet	T156	8288192	44 J	Euler	Mixed	M200	2830575
16 C	Euler	Tet	T200	4056575	45 K	Euler	Struct	Gridgen	10640580
17 C	Euler	Tet	PW/MCAP	6033621	46 L	Euler	Mixed	M100	5363065
18 C	SA	Tet	PW/MCAP	7864672	47 L	Euler	Mixed	M125	2742341
19 D	Euler	Tet	Adapted-Adj	759048	48 L	Euler	Mixed	M156	1411515
20 D	Euler	Tet	Adapted-LP	860010	49 L	Euler	Mixed	M200	695709
21 D	Euler	Tet	T100	5363065	50 M	Euler	Cart	Adapted-Adj	15885435
22 D	Euler	Tet	T125	2742341	51 N	Euler	Cart	Adapted	4900000
23 D	Euler	Tet	T156	1411515	52 N	Euler	Cart	Fixed	75000000
24 D	Euler	Tet	T200	695709	53 N	Euler	Mixed	M100	22423283
25 E	Euler	Tet	T100	5363065	54 O	Euler	Hybrid	Fixed	108000000
26 E	Euler	Tet	T125	2742341	55 P	Euler	Cart	Fixed	54466264
27 E	Euler	Tet	T156	1411515	56 Q	Euler	Mixed	M100	22423283
28 E	Euler	Tet	T200	695709	57 R	SA	Overset	Fixed	21300000
29 F	Euler	Tet	T100	31801283	58 R	SA	Mixed	Fixed	12100000

Delta Wing Body Perceived Level

- Examine the median signature with signatures identified as different
 - Statistics of PL for PHI=0, 30, 60, and 90 degrees
 - The on- and off-track signatures are propagated in the same manner for statistics (not a boom carpet)
 - Convergence of PL with grid refinement at PHI=0 degrees
 - Change in PL with extraction location at PHI=0 degrees

Delta Wing Body Validation Metric

- Examine the wind tunnel measurement with signatures identified as different
 - Convergence of the validation metric with grid refinement
 - Largest and smallest validation metric

Delta Wing Body Validation Metric H=24.8, PHI=0deg 0.0020 0.0015 0.0010 0.0005 Structured Tetrahedral Mixed 0.0000 1 1 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 58 h

- Statistics showed an increase in mean PL with off-track angle with a similar standard deviation
- Most outliers at 60deg off-track angle
- Many outliers were present at multiple offtrack angles

- Loudest signatures had a steeper nose and wing expansions than median signature
- Quieter signatures had an extra shock or weaker expansion that moved final shock forward on ground

- The participants showed little agreement on the grid refined PL and the validation metric
 - Lacked a clear majority opinion, especially for the validation metric
 - Stronger shocks and separated "wake" region may illustrate differences in Euler methods

- SEEB-ALR had a median PL of 90.5 dB with 0.8 dB standard deviation
- Delta Wing Body had a median PL of 94.6 dB with 0.3 dB standard deviation for the centerline
- Study by Bretl and Walker propagated wind tunnel measure measurement uncertainty to 0.4-4.1dB uncertainty in PL

- Propagating ground signatures from different locations had 0.5 dB standard deviation for SEEB-ALR and 0.2 dB for Delta Wing Body standard deviation
 - Most methods are doing an excellent job of maintaining signatures in the near-field

- SEEB-ALR had a tight grouping of PL and validation metric near the median values
- Delta Wing Body lacked an obvious grouping with grid refinement
 - Exacerbated by strong shocks and separated "wake" region?

- Statistics of validation metric and PL were used to discriminate methods
- Computational uncertainty appears to be on the same level as wind tunnel measurements for the these simple geometries

Future/Discussions

- Submissions can be updated until 07-FEB-2014 (for release and summary paper)
- Workshop data made available by 14-FEB-2014 to enable independent analysis
 - Extracted signatures
 - Volume grids
 - Wind tunnel data
 - Propagated ground signatures
 - Noise measures
 - Validation metrics