Sonic Boom Prediction with FaSTAR and HexaGrid

<u>Masashi Kanamori</u>, Atsushi Hashimoto and Takashi Aoyama Numerical Simulation Research Group, Institute of Aerospace Technology, JAXA</u>

Introduction / Outline

- ✓ The objectives of 1st SBPW
 - to assess the techniques for predicting signatures suitable for sonic boom prediction
 - to compare the solutions of each participants
- Models provided from workshop are:
 - ✓ SEEB-ALR Body of Revolution
 - 69-Degree Delta Wing Body
 - Lockheed Martin 1021 Full Configuration : not considered

Two models are analyzed with FaSTAR and HexaGrid:

- ✓ for GIVEN grid
- ✓ for OWN grid

About Flow Solver

FaSTAR (<u>FAST A</u>erodynamic <u>R</u>outines)

- fast flow solver for unstructured grid (1.4 hour/case using 100cores, 10M grid)
- sufficiently accurate results obtained
- many options available

176 C 1991 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. BUT 1. STATE S		
Governing equation	Compressible Euler/Navier-Stokes equation		
Discretization	Finite volume method (Cell center/Cell vertex)		
Inviscid flux	HLLEW, Roe, HLLE, AUSM+-UP, SLAU		
Gradient evaluation	Least-Square, Green-Gauss, GLSQ		
Limiter function	Hishida, Venkatakrishnan, Barth-Jespersen, minmod		
High resolution	MUSCL, U-MUSCL		
Turbulence model	SA, SST, EARSM, DES, LES		
Transition model	Forced, Natural(γ-Re _{θt})		
Parallelization	MPI		
Time integration	LU-SGS (steady/unsteady, local/global time step), Preconditioning for low-speed flow		
onvergence acceleration	Multigrid(FAS), Krylov method (GMRES)		
Element type	Tetrahedra, Pyramid, Prism, Hexahedra		
Grid input	Gridgen, Pointwise, HexaGrid, MEGG3D		
Result output	Fieldview(FV-UNS), Tecplot, Paraview(VTK)		

from 4th Drag Prediction Workshop

Calculation conditions:

- 64core@JSS(JAXA Supercomputer System)
- Inviscid calculation
- HLLEW scheme with 2nd order MUSCL interpolation with Hishida's van Leer type limiter
- LU-SGS time integration with local time stepping
- ✓ CFL number is set to 10.

GIVEN GRID ANALYSES

Summary of Grids and Convergence Histories

Mixed element type were chosen as given grids.

Convergence histories indicate that thousands of iteration needs to be converged.

Summary of the given grid

	SEEB-ALR	69deg. Delta		
Coarse	200s	200s		
Medium	156s	150s		
Fine	100s	125s		
Very fine	080s	100s		

Calculation stops when the residual reaches the plateau.

 Time to converge is about 1 to 1.5 hours.

Results of SEEB-ALR

Signatures from the result of different resolution show good convergence.
 Only the signature of 156s at 42 in. is different from others.

Difference on Signature at H=42 in.

- Something is wrong with the signature of 156s at 42 in., not with that at 21.2in.
- Compared with the signatures at different azimuthal angles, namely 90 and 180 deg., such a discrepancy is not observed.
- This indicates that problematic cells are located between H=21.2in. and 42in.

Results of 69-Degree Delta Wing Body

Results of 69-Degree Delta Wing Body Cont'd.

 $\checkmark \phi$ -variations for H = 24.8 in.

Results of 69-Degree Delta Wing Body Cont'd.

Masashi Kanamori, Numerical Simulation Research Groub, 1AH, BAXA

OWN GRID ANALYSES

JA XA

HexaGrid – Full Automatic Grid Generator –

Full Automatic grid generation using a few control parameters

- \checkmark Domain (max and min of x, y, z)
- Max and min cell sizes on the surface
- Layer parameter (thickness of first layer, expansion factor)

+ CAD data (STL format)

Algorithm of HexaGrid

- Start with one big element(= computational domain)
- Cartesian grid is generated by means of successive local refinement
- Each refinement divides a cell isotropically into eight child cells
- Refine the element using 3 criteria

Body-fitted layer grid is generated near the solid surface (Layer grid is hexahedral)

Outline for Own Grid Analyses

Our Strategy

- \checkmark The model is <u>rotated by Mach angle μ_{∞} </u> so that the grid lines become parallel to the shock waves.
- Refinement box, or locally refined region is designated along shock propagation path, which guarantees a sufficient resolution for predicting near-field signatures.
- Only the signatures
 - for 69-degree delta wing body
 - on the plane of symmetry
 - are considered in this presentation.

Masashi Kanamori, Numerical Simulation Research Group, IAT, JAXA 01/12/2014

Cartesian grid away from the model

Parametric Study Settings

- The sensitivity of the nearfield signature is investigated by changing the size of Refinement Box parametrically:
 - Iongitudinal length L
 - ✓ spanwise length B
- L=150mm is about the size of the model in x direction.
- \checkmark B=70mm is twice of the span of the model.
- The number of grid point: min. 20M, max. 90M

Longitudinal <i>L</i> Spanwise <i>B</i>	150 mm	200 mm	250mm
70 mm	case 1	case 2	case 3
100mm	case 4	case 5	case 6
150mm	case 7	case 8	case 9

Example of the Result

Effect of Longitudinal Resolution

- ✓ Signatures obtained at H=31.8in.
- L variation with fixed B
- ✓ Compared with three signatures for fixed *B*, the resolution along longitudinal direction is not so sensitive.
 → Setting *L*=(size of the model in the x direction) is sufficient for predicting nearfield signatures.

Such a trend is observed at the other locations.

i ref. = Obtained from given grid (100s)

Effect of Spanwise Resolution

- Signatures obtained at H=31.8in.
- B variation with fixed L
- Signatures corresponding to large B show good agreements with the reference result.
 - \rightarrow Large span is necessary for accurate prediction of the nearfield signatures.

Such a trend is observed at the other locations.

x ref. = Obtained from given grid (100s)

Effect of Spanwise Resolution Cont'd

Circumferential Distribution of Pressure Signal

Concluding Remarks

Predictions of nearfield signatures are conducted with FaSTAR.

- SEEB-ALR and 69-degree Delta Wing Body are calculated.
- For given grids,
 - extracted signatures show good convergence against grid resolution.
 - only the result of SEEB-ALR has some different tendency compared with other results, which is mainly due to the grid itself rather than the flow solver.

For own grids,

With HexaGrid, or automatic grid generation tool, nearfield signatures are predicted correctly by the combination of model rotation and local grid refinement.

The effect of refined region on the nearfield signature is investigated.

- Iongitudinal length is not important.
- sufficiently large spanwise resolution is important for the prediction of nearfield signatures.

Thank you for your attention!

22

Masashi Kanamori, Numerical Simulation Research Group, IAT, JAXA

APPENDIX

JAXA

←small

0.00

0.00

0.00

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

0.20

0.15

0.10

0.05

0.00

-0.05 -0.10

-0.15

-0.20 -0.25

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

Ð

-larg

个

small-

ongitudinal

Masashi Kanamori, Numerical Simulation Research Group, IAT, JAXA

01/12/2014

0.75

0.75

0.75

1.00

1.00

1.00

large→

←small

Spanwise *B*

large→

Masashi Kanamori, Numerical Simulation Research Group, IAT, JAXA

←small

Spanwise *B*

large→

Masashi Kanamori, Numerical Simulation Research Group, IAT, JAXA

←small

Spanwise *B*

large→

Masashi Kanamori, Numerical Simulation Research Group, IAT, JAXA

Pressure Contours for 69deg. Delta-Wing Waves emanating from wing causes a generation Cp(pres.coef.) of disturbances in the circumferential direction. 0.025 Capturing such disturbances is -0.100 important to predict nearfield waveform correctly, which will be Cp(pres.coef.) 0.25 0.025 discussed later. -0.100 Cp(pres.coef.) 0.025 -0.100 Cp(pres.coef.) downstream 0.025 -0.100