1st AIAA Sonic Boom Prediction Workshop

January 11, 2014 National Harbor, Maryland

Sonic Boom Prediction Using a Multi-Block Structured CFD Solver - ADCS

Prof. Zhong Lei

Tokyo University of Science, Suwa, Japan

Dr. Yoshikazu Makino

Japan Aerospace Exploration Agency

Outline

Cases analyzed

- SEEB-ALR Body of Revolution provided grid
- 69-Degree Delta Wing Body grid modified from the provided one
Flow solver / Computing platform
- ADCS (Aero-Dynamic Computational System)
- An in-house CFD Code developed at JAXA
- Multi-block, structured grid

Results

- Pressure countours
- Near field signature

Highlights
Conclusions

Flow solver / Computing platform

ADCS (Aero-Dynamic Computational System)
An in-house CFD Code developed at JAXA

fundamental research

aerodynamic design

- Large scale simulation, complex configuration
- Reynolds-averaged Navier-Stokes equations
- Turbulence models
- Spalart-Allmaras model
- Menter's SST $k-\omega$ model
- Some k - ε models
- Discrete method
- Finite difference method
- Multi-block grids
- Domain decomposition
- Fortran90 parallel programming with MPI
- conducted at JAXA Supercomputer System

Flow solver / Computing platform

\{DCS (Aero-Dynamic Computational System)

Sonic Boom Prediction in this study

Governing Equations	Euler equations for the inviscid compressible flow
Turbulence model	No
Mesh	genralized coordinates, multi-block technique
Discrete method	finite difference method
Inviscid flux	Chakravarthy-Osher TVD, MUSCL interpolation, 3rd-order
Viscous flux	No
Time integral	LU-ADI
Boundary condition file	generic boundary condition file of Gridgen
File format	Plot3d
Post-process	FIELDVIEW, Tecplot

SEEB-ALR Body of Revolution

Input data

- $\mathrm{CFL}=1.0$
- Angle of attack $=0$ degree
- Mach number $=1.4$

Workshop provided grid

- Multi-block, 75blocks
- Grid points: 7,986,107

Used Resource

- Number of CPU $=15$, node $\mathrm{x} 4=60$
- Total Normal Page Memory $=6.7 \mathrm{~GB}$

Fig. Provided grid

SEEB-ALR Body of Revolution

Convergence of computation

Convergence criteria:

- RMS of the residual of the Euler equations
- Also check the lift and drag coefficients
- Converged sufficiently

SEEB-ALR Body of Revolution

SEEB-ALR Body of Revolution

near field signatures

SEEB-ALR Body of Revolution

near field signatures

69-Degree Delta Wing Body

Input data

- $\mathrm{CFL}=1.0$
- Angles of attack $=0,2.079,3.588$ degree
- Mach number $=1.70$

Modified from the workshop grid

- Multi-block: changed to 20 blocks
- Grid points: 10,141,696

- normal spacing on the surface was modified at the sting step to improve convergence, and on the wing surface to improve accuracy

Used Resource

- Number of CPU $=20$ node $\mathrm{x} 4=80$
- Total Normal Page Memory $=9.4 \mathrm{~GB}$

Ref.: Originally described as Model 4 in Lynn W. Hunton, Raymond M. Hicks, and Joel P. Mendoza, "Some Effects of Wing Planform on Sonic Boom," NASA TN D-7160, 1972.

69-Degree Delta Wing Body

Modification of grid: normal spacing was modified.

grid spacing of the model surface:

- in normal direction : 0.025
- on the surface, leading, trailing, center edges of the wing: 0.025

69-Degree Delta Wing Body

Convergence of computation

Mach number $=2.079$

Convergence criteria:

- RMS of the residual of the Euler equations
- Also check the lift and drag coefficients
- Converged sufficiently

69-Degree Delta Wing Body

Pressure contours

Angle of attack $=\mathbf{0} .0 \mathrm{deg}$

69-Degree Delta Wing Body

Pressure contours

Angle of attack $=2.079 \mathrm{deg}$

Pressure [PLOT3D]

Pressure [PLOT3D]

$\Delta=0.01$

69-Degree Delta Wing Body

Pressure contours

Angle of attack $=3.588 \mathrm{deg}$

Pressure [PLOT3D]

Pressure [PLOT3D]
2.00
1.00
-0.00
$\Delta=0.01$

69-Degree Delta Wing Body

near field signatures

Angle of attack $=\mathbf{0 . 0 \mathrm { deg }}$, $\mathrm{phi}=0 \mathrm{deg}$

69-Degree Delta Wing Body

near field signatures

Angle of attack $=\mathbf{0 . 0 \mathrm { deg }}$, phi=0deg

69-Degree Delta Wing Body

18
near field signatures
Angle of attack $=0.0 \mathrm{deg}, \mathrm{H}=24.8 \mathrm{in}$

69-Degree Delta Wing Body

near field signatures
Angle of attack $=0.0 \mathrm{deg}, \mathrm{H}=31.8 \mathrm{in}$

69-Degree Delta Wing Body

near field signatures

Angle of attack $=2.079 \mathrm{deg}$, phi=0deg

69-Degree Delta Wing Body

near field signatures
Angle of attack $=2.079 \mathrm{deg}$, phi=0deg

69-Degree Delta Wing Body

22

near field signatures

Angle of attack $=2.079 \mathrm{deg}, \mathrm{H}=24.8 \mathrm{in}$

69-Degree Delta Wing Body

near field signatures

Angle of attack $=2.079 \mathrm{deg}, \mathrm{H}=31.8 \mathrm{in}$

69-Degree Delta Wing Body

near field signatures

Angle of attack $=3.588 \mathrm{deg}$, $\mathrm{phi}=0 \mathrm{deg}$

69-Degree Delta Wing Body

near field signatures

Angle of attack $=3.588 \mathrm{deg}$, $\mathrm{phi}=0 \mathrm{deg}$

69-Degree Delta Wing Body

near field signatures

Angle of attack $=3.588 \mathrm{deg}, \mathrm{H}=24.8 \mathrm{in}$

69-Degree Delta Wing Body

near field signatures

Angle of attack $=3.588 \mathrm{deg}, \mathrm{H}=31.8 \mathrm{in}$

Highlights

28
Grid: Spacing in normal direction of the model surface did not have significant effect on the numerical accuracy of the sonic boom. Convergence: generally good for Euler equations

Highlights

29
Angle of attack: The level of sonic boom was strongly dependent on the angle of attack.

Conclusions

30

Convergence: was generally good for Euler equations, but should be careful of the sting step.

Accuracy: pressure signatures were generally well as compared with experiments. Normal grid spacing had some influence on numerical accuracy on the model surface, but little on near field.

