

1st Sonic Boom Prediction Workshop ONERA contribution

52nd Aerospace Sciences Meeting Saturday, January 11, 2014

<u>I. Salah El Din</u> , Andrea Minelli, Richard Grenon, Gerald Carrier Onera, The French Aerospace Lab, France

return on innovation

ONERA and supersonic aircrafts

Supersonic aircraft design @ onera

SCIECH 2014

Onera copyright – Do not use without permission

Numerical approaches

Prediction – Multi-zone approaches

Numerical approaches

Near field prediction – Sonic boom oriented meshing

MESH

- Provided
- In house Fortran analytical surface and volume structured multiblock mesh generator.
- ICEM/HEXA mesher
- The volume mesh is usually aligned and refined along the shock patterns.

SOFTWARE

SCIETECH 2014

 elsA ONERA multiblock parallel structured-based mesh solver dedicated to Euler, RANS, URANS, DES, LES computations for monospecies perfect gas (discrete adjoint available for aerodynamic objective functions)

Numerical approaches

Near field prediction – Sonic boom oriented meshing

MESH

- Provided
- Generated with ICEM or Pointwise
- Unstructured mesh capabilities development with adaptation to increase the near CFD field domain extent
- Mesh adaptation performed in collaboration with INRIA / GAMMA Project team

SOFTWARE

SCIETECH 2014

 CEDRE ONERA multiblock multi-physics polyhedric parallel unstructured-based mesh solver

M=1.6

Euler

M=1.7

Euler

Data formats

- Unstructured meshes: converted by INRIA in a CEDRE complyant format (.mesh)
- Structured mesh: cgns file provided by NASA

SEEB-ALR

Unstructured meshes

- seeb-inches-000a-160m-100s-tet
- seeb-inches-000a-160m-156s-tet
- seeb-inches-000a-160m-200s-tet

DELTA-69

Unstructured meshes

- delta-split-tet-000a-170m-100s
- delta-split-tet-000a-170m-200s

Structured mesh

• delta-meter-v314.cgns -

CEDRE

- Flux AUSM+
- Jacobian: roe
- Quasi-Newton GMRES Implicit resoltution Fixed number of iterations: 2000

ELSA

- Flux : Jameson/Roe
- Backward-Euler time
- stepping LUSSOR resolution
- Fixed number of iterations: 3000/7000

SEEB-ALR case

SCOTECH 2014

SEEB-ALR – Pressure signature in near field – mesh convergence

DELTA69 case

Unstructured mesh – CEDRE solver

Structured mesh – elsA solver

SCIECH @

DELTA69 – Pressure signature in near field – Uns vs Str

DELTA69 – Pressure signature in near field – Uns vs Str

MESH AND NEAR FIELD CFD

- Automated unstructured mesh adaptation (INRIA Feflo mesh adaptation + CEDRE) see • also ONERA-Stanford results
- RANS vs EULER •
 - Sensitivity wrt numerical parameters (flux schemes, dissipation ...)
- Alternative SB source prediction (Equivalent area calculation from skin data) •

MESH AND NEAR FIELD CFD

- Unstructured mesh adaptation
- RANS vs EULER
 - Sensitivity wrt numerical parameters (flux schemes, dissipation ...)
- Alternative SB source prediction Surf cut

MESH AND NEAR FIELD CFD

- Unstructured mesh adaptation
- RANS vs EULER

SCIECH @

- Sensitivity wrt numerical parameters (flux schemes, dissipation ...)
- Alternative SB source prediction Surf cut

 x/L_{ref}

0.5

-0.0785714 -0.09 1.5

• SB ASSESSMENT – PROPAGATION

- Use of multipole matching (MM) to match near and far field (dev @ onera since 2004)
 - R/L reduction using MM
- Propagation solver : TRAPS & BangV (p^{ty} of Airbus /Dev UPMC F. Coulouvrat)
 - Molecular relaxation
 - Cross-wind
 - Turbulence
- PldB like metrics validation vs explicit delta p criteria

