USM3D and OVERFLOW Simulations for 1st AIAA Sonic Boom Prediction Workshop

Alaa Elmiligui NASA Langley Research Center

Susan Cliff William Chan Donald Durston NASA Ames Research Center

James C. Jensen Arizona State University

52nd AIAA Aerospace Sciences Meeting and Exhibit National Harbor, Maryland January 11, 2014

- Motivation
- Computational Models
 - USM3D
 - OVERFLOW
- Computational Grid Methodology
- Results

Seeb-ALR 69° Delta Wing-Body LM 1021

• Conclusions

Motivation

- Accurate sonic boom pressure signatures at several body lengths
- Robust stretching / shearing method for tetrahedral meshes
- Single mesh for on- and off-track pressure signatures
- Automated tool to construct mesh

- Motivation
- Computational Models
 - USM3D
 - OVERFLOW
- Computational Grid Methodology
- Results

Seeb-ALR 69° Delta Wing-Body LM 1021

• Conclusions

Computational Tools: NASA Codes

	USM3D		OVERFLOW 2.2
•	Unstructured tetrahedra, cell-centered, finite volume	•	Structured overset, vertex based, finite difference
•	Euler & Navier-Stokes	•	Navier-Stokes
•	Steady state simulations	•	Steady state simulations
•	Upwind spatial discretization	•	Central & upwind spatial discretization
•	Standard & characteristic based BC's	•	Standard & characteristic based BC's
•	Spalart-Allmaras turbulence model	•	Spalart-Allmaras turbulence model

- Motivation
- Computational Models
 - USM3D
 - OVERFLOW
- Computational Grid Methodology
- Results

Seeb-ALR 69° Delta Wing-Body LM 1021

• Conclusions

Computational Tools: USM3D Meshes

Mach Cone Aligned Prism (MCAP) meshes for 1021 model

Shearing/Mach Angle Alignment of the Prismatic Grid

 α = angle of attack μ = sin⁻¹(1/M)

Computational Tools: Overset Meshes

OVERFLOW Overset Meshes for 1021 Model

Front View

Symmetry Plane View

- Motivation
- Computational Models
 - USM3D
 - OVERFLOW
- Computational Grid Methodology
- Results

Lockheed Seeb-ALR

Variation in Surface Geometry

CAD definition (Green)-----Workshop Geometry (Magenta)

Maximum Thickness Point ----12.5 X Magnification

Mach Line Contours Superimposed on the Cp Contours M=1.6, α =0°, Rn=6.42x10⁶

Seeb-ALR *M*=1.6, α =0°, *h*= 31 in., *Rn*=6.42x10⁶ 0.01 0.005 0 -0.005 -0.01 USM3D, SA, 6.2x10⁶ pts USM3D, LAM, 6.2x10⁶ pts -0.015 -120 -115 -110 -105 -100 -95 -90

X, inches

 $\Delta P/P$

Seeb-ALR $M=1.6, \alpha=0^{\circ}, h=31 \text{ in.}, Rn=6.42 \times 10^{6}$ 0.01 0.005 0 -0.005-0.01 USM3D, SA, 6.2x10⁶ pts USM3D, LAM, 6.2x10⁶ pts OVERFLOW, SA, 21.8x10⁶ pts EXPERIMENT, runs 581-606 ref 608 -0.015 -120 -115 -110 -105 -100 -95 -90

 $\Delta P/P$

X, inches

- Motivation
- Computational Models
 - USM3D
 - OVERFLOW
- Computational Grid Methodology
- Results

Conclusions

69° Delta Wing-Body

 Mach
 = 1.7

 L_{Ref} = 6.898 inch

 $\boldsymbol{\alpha}$ = 0°

 Rn = 2.43x10⁶

Mach Line Contours Superimposed on the Cp Contours M=1.7, α=0°, Rn=2.43x10⁶

- Motivation
- Computational Models
 - USM3D
 - OVERFLOW
- Computational Grid Methodology
- Results

Seeb-ALR69° Delta Wing-BodyLM 1021

Lockheed Martin 1021 Model

M=1.6, α =2.1°, L_{Ref} = 22.365 in., Rn=8.10x10⁶

Mach Line Contours Superimposed on the Cp Contours M=1.6, α =2.1°, Rn=0.395x10⁶

Lockheed Martin 1021 Model

AFLR3 and BG

V-Grid and MCAP Pointwise and MCAP

ΔP/P

∆P/P

Summary

- Numerical simulations using USM3D and OVERFLOW were performed for all three geometries of the 1st AIAA Sonic Boom Prediction Workshop.
- The success is largely attributed to aligning cells with the Mach cone and stretching along Mach rays for accurate sonic boom computations.
- Solutions using the Workshop "Inflate" grid methodology provided sharper shockwaves than the MCAP.
- MCAP method produced results that more closely matched experiment.

a Ames Research Center Unitary Plan Wind Turne 9-by 7-foot SWT

Questions ?