AIAA Aviation Forum Special Session: Commercial Supersonic Activities 19th June, 2018, Dallas, TX, USA

National Aeronautics and Space Administration

Adjoint Error Estimation During Prediction of Sonic Booms Sriram K. Rallabhandi

Aeronautics Systems Analysis Branch NASA Langley Research Center Hampton, VA 23681

Sonic Boom Primer

Adjoint Error Estimation During Prediction of Sonic Booms

sBOOM

• Propagation based on lossy Quasi-1D Burgers equation

2nd AIAA Sonic Boom Prediction Workshop, Jan 2017, Grapevine TX

Adjoint Error Estimation During Prediction of Sonic Booms

Sonic Boom Calculation Overview

Sonic Boom Modeling: Numerical Challenges

Adjoint Error Estimation During Prediction of Sonic Booms

Motivation

• Recent CFD developments include output-based mesh adaptation to resolve near-field as well as sonic boom loudness (ASEL)

Adjoint Error Estimation During Prediction of Sonic Booms

the error to drive adaptation

Sonic Boom Adjoints

• Sonic boom numerical modeling:

 k_n – Blokhintzev scaling term $A^n, B^n - N_2$ Relaxation matrices $A_{n,2}, B_{n,2} - O_2$ Relaxation matrices $A_{n,3}, B_{n,3}$ – Absorption matrices $f(t_n)$ – Nonlinear terms

$$A_n q_n = k_n B_n p_{n-1}$$

$$A_{n,2} r_n = B_{n,2} q_n$$

$$A_{n,3} t_n = B_{n,3} r_n$$

$$p_n = f(t_n)$$

Some other outputs
currently available:
•
$$J = (P_g - P_{g,t})^2$$

• $J = \frac{1}{2} (A_e - A_{e,t}) (A_e - A_{e,t})^T$

• Sonic boom discrete-adjoint equations:

$$\lambda_{n}^{T} = -\frac{\partial J_{n}}{\partial p_{n}} + \gamma_{0,n+1}^{T} k_{n+1} B^{n+1}$$

$$\beta_{n}^{T} A_{3}^{n} = \lambda_{n}^{T} \frac{\partial f_{n}}{\partial t_{n}}$$

$$\gamma_{1,n}^{T} A_{2}^{n} = \beta_{n}^{T} B_{3}^{n}$$

$$\gamma_{0,n}^{T} A^{n} = \gamma_{1,n}^{T} B_{2}^{n}$$

$$(1)$$

• Outputs/Objectives:

$$J = ASEL \qquad J = P_g^2$$
$$\frac{\partial J}{\partial p_g} = \frac{\partial (ASEL)}{\partial p_g} \qquad \frac{\partial J}{\partial p_g} = 2P_g$$

Sonic Boom Adjoints: Loudness

$$J = ASEL$$
$$\frac{\partial J}{\partial p_g} = \frac{\partial (ASEL)}{\partial p_g}$$

Sonic Boom Adjoints: Ground Pressures

270.00 ft.

-0.5

-0.08

-0.06

-0.04

-0.02

0

Time

0.06

10

0.04

0.02

- Adjoint sensitivities verified
 - Great agreement with those from complex variable approach

	Grid Point	Adjoint Gradient	Complex Gradient
J = ASEL	2	-6.905038627775740	-6.9050386 <u>1583487</u>
	100	-2.090800737003511	-2.09080073 <u>325145</u>
	1000	12.717298769483072	12.71729876 <u>557384</u>
	2000	-5.460241220665764	-5.460241220 <u>578294</u>
	Grid Point	Adjoint Gradient	Complex Gradient
	Grid Point 2	Adjoint Gradient -0.233976119396085	Complex Gradient -0.2339761193 <u>45164</u>
$J = P_g^2$	Grid Point 2 100	Adjoint Gradient -0.233976119396085 1.759314455499879	Complex Gradient -0.2339761193 <u>45164</u> 1.759314455 <u>758305</u>
$J = P_g^2$	Grid Point 2 100 1000	Adjoint Gradient -0.233976119396085 1.759314455499879 16.769371001777564	Complex Gradient -0.2339761193 <u>45164</u> 1.759314455 <u>758305</u> 16.7693710017 <u>35749</u>

Adjoint Error Estimation During Prediction of Sonic Booms

Adjoint Error Estimation

Results: Sine Wave

0.001

0.0008

0.0006

0.0004

0.0002

-0.0002

-0.0004

-0.0006

-0.0008

-0,001

dp/P

Results: Error in Ground Signatures, Sine Wave

Adjoint Error Estimation During Prediction of Sonic Booms

Results: Error in Ground Signatures, Sine Wave

• Remaining error keeps dropping after adjoint error correction

Exact error $J_h - J_H$

Results: Error in Ground Signatures, Sine Wave

Adjoint error bars keep decreasing with increasing sampling frequency

Adjoint Error Estimation During Prediction of Sonic Booms

Results: Error in ASEL, Sine Wave

Results: Error in ASEL, Sine Wave

• Remaining error keeps dropping, but slowly

Remaining Error Estimate $\left| J_{h} - J_{h}^{H} + \sum_{n=1}^{N} (\Gamma_{h,n}^{H})^{T} R(U_{h,n}^{H}) \right|$ Adjoint Correction

Exact error

$$J_h - J_H$$

Results: Error in ASEL, Sine Wave

Summary and Future Work

- NASA
- sBOOM enhanced to estimate error in sonic boom predictions by leveraging discrete adjoint methodology
- Errors useful in predicting how much variability exists in the current solution in determining metrics of interest
- Valuable to have *a priori* error estimates given the numerical discretization setup

Future Work

- Loudness calculation at high sampling frequencies
- Investigate error stalling and improve performance
- Reduce memory footprint and improve efficiency
- Verify estimated errors via Error Transport Equations (ETEs)

Acknowledgments

- NASA Commercial Supersonic Technology (CST) project
- Michael Park, NASA Langley
- Boris Diskin, NIA
- Michael Aftosmis/Marian Nemec, NASA Ames

Thank You! – Any Questions?

Adjoint Error Estimation During Prediction of Sonic Booms

EXTRA SLIDES

H = Coarse mesh h = Embedded refined mesh

$$J(U_{h}) \approx J(U_{h}^{H}) + \sum_{n=1}^{N} \frac{dJ(U_{h}^{H})}{dU_{h,n}} (U_{h,n} - U_{h,n}^{H})$$

$$R(U_{h,n}) = 0 \approx R(U_{h,n}^{H}) + \frac{dR(U_{h,n}^{H})}{dU_{h,n}} (U_{h,n} - U_{h,n}^{H})$$

$$J(U_{h}) \approx J(U_{h}^{H}) - \sum_{n=1}^{N} \frac{dJ(U_{h}^{H})}{dU_{h,n}} \left[\frac{\partial R(U_{h,n}^{H})}{\partial U_{h,n}}\right]^{-1} R(U_{h,n}^{H})$$

$$(\Gamma_{h,n}^{H})^{T} \frac{dR(U_{h,n}^{H})}{dU_{h,n}} = \frac{dJ(U_{h,n}^{H})}{dU_{h,n}}$$

$$J(U_{h}) \approx J(U_{h}^{H}) - \sum_{n=1}^{N} (\Gamma_{h,n}^{H})^{T} R(U_{h,n}^{H})$$

Remaining Error $\approx \left| J_h - J_h^H + \sum_{n=1}^N (\Gamma_{h,n}^H)^T R(U_{h,n}^H) \right|$

n=1

Adjoint Error Correction

 $\approx \sum (\Gamma_{h,n}^H)^T R(U_{h,n}^H)$

Results: Error in Loudness Metrics, Non-Sine Wave

Results: Error in Loudness Metrics, Non-Sine Wave

• Adjoint error estimate for loudness: ASEL

