Surrogate Based Shape Optimization of a Low Boom Fuselage Wing Configuration

Jochen Kirz

German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology AIAA Aviation, June 20, 2019

Motivation

- Adding geometrical complexity
- Using higher cost CFD methods

Fuselage Wing Configuration

Lift

Achieve trimmed flight (lift=weight) → Development of required methods

Complex 3D Interactions of waves

Off-track loudness often louder than on-track loudness

→ Understanding of 3D aerodynamics and lowering the off-track loudness

Outline

- Setup of the Optimization Process
 - *Overview
 - Background
 - Detailed Optimization Setup
- Optimization Results

Summary and Outook

Optimization Process Overview

Optimization Process Overview

Near Field

Pressure Signature

Optimization Process Background

Applied for SBPW1 and SBPW2 cases and compared to other participants

1.2

1.4

1.6

Optimization Process Background

and compared to other participants CATIA geometry generation SBPW2 Mean and Uncertainty Euler Fine DLR TAU Euler CENTAUR-mixed h=1.0 DLR TAU Euler WS-tet h=0.7 0.8 **CENTAUR** grid generation 0 که/p_∞*(H/L)^{0.5} [%] DLR TAU-code near-field flow solver -0.4**ONERA** ground propagation tool -0.8 0.2 0 0.4 0.6 0.8 1.2 1.4 1.6 based on TRAPS Code X_n/L [-] Kirz, J., and Rudnik, R., "DLR Simulations of the First AIAA Sonic **ONERA loudness calculation tool** Boom Prediction Workshop Cases," AIAA Paper 2017-0276

Kirz, J., and Rudnik, R., "DLR TAU Simulations for the Second AIAA Sonic Boom Prediction Workshop," AIAA Paper 2017–3253

Applied for SBPW1 and SBPW2 cases

Applied for multi-objective

1.0

1.2

Optimization Process Background

Optimization Process Geometry

JAXA Wing Body (JWB)

- Wing-body configuration designed by Ueno et al. for the Second AIAA Sonic Boom Prediction Workshop to represent the on-track equivalent area distribution of the more complex NASA C25D geometry¹
- CAD model based on universal parametric aircraft CAD model developed at DLR²

[1] Ueno, A., Kanamori, M., and Makino, Y., "Multi-fidelity Low-boom Design Based on Near-field Pressure Signature," AIAA Paper 2016–2033

[2] Ronzheimer, A., "CAD in Aerodynamic Aircraft Design," DLRK Paper 450117, 2017.

Optimization Process Geometry Parameterization

Three Consecutive Optimizations

- Outer airfoil (green)
- Inner airfoil (red)
- Wing twist, sweep, dihedral

Fuselage geometry fixed during all optimizations

Optimization Process Geometry Parameterization

Airfoil Parameterization (inner & outer)

- B-splines with 6 control points for each side (upper/lower)
- Nose radius fixed

0.2

0.4

0.06

0.03

0.00

-0.03

0.0

Z/C

Trailing edge thickness fixed

 \rightarrow 8 design variables

0.06

Optimization Process Geometry Parameterization

Wing twist, sweep, dihedral

- 4 design variables for the twist
- 3 design variables for the sweep
- 3 design variables for the dihedral
 - \rightarrow 10 design variables

- at the root, kinks and tip
- between those locations

Optimization Process Grid Generation

CATIA to CENTAUR Sources Toolbox (CCS)

- CATIA source primitives for typical CENTAUR sources
 → Sources moving with geometry
- Automatic sets of source primitives for complex geometries (wing segments, fuselage, engine)
 - \rightarrow Grid element sizes based on curvature

Optimization Process Grid Generation

Hybrid Inviscid CENTAUR Grids

- Modular grid generation approach
- Tetrahedral near-body grid
 - Generated for 0° angle of attack
 - Elliptical cross section
- Fully structured far-field
 - Aligned to the Mach cone
 - 7 body lengths in radial direction

→ approx. 13,000,000 grid nodes

Optimization Process Near-Field Signature Calculation

DLR TAU Code

- Euler simulations
- LUSGS timestepping
- 2nd order AUSMDV upwind scheme with Venkatakrishnan limiter
- Mach = 1.6
- Altitude = 15.760 m

Near-field pressure signatures extracted at 5 body lengths

Optimization Process Target Lift Simulations

Method for the adjustment of the angle of attack

Keep alignment of the far-field grid to the Mach cone

- Grid deformation technique applied¹
- Modification (ΔC_L<0.0001): Ackeret's formula used to calculate deformation angles every 200 iterations

[1] Kirz, J., "Grid Setups and Numerical Simulations of a Low Boom Concept at Off Design Flight Conditions," DLRK Paper 450243, 2017.

CATIA geometry generation **Optimization Process Propagation and Loudness CENTAUR** grid generation DLR TAU-code near-field flow **Ground propagation** Ray tracing and signature aging based on **ONERA** ground propagation linear theory tool based on TRAPS Code Standard atmosphere Near Field **ONERA** loudness calculation tool **Pressure Signature** Developed and tested by **ONERA** Ground **Pressure Signature** Loudness metrics Level of perceived loudness (PLdB)

• Maximum loudness as objective

Optimization Process SBO Setup

Design of Experiments

- Centroidal Voronoi tessellatized (CVT) Latin Hypercube
- 80 Samples
- Simulations performed in parallel

Surrogate Model

- 3rd order Kriging
- Tuning of the model hyperparameters with the Differential Evolutionary algorithm

Multi-objective optimization

Maximum PLdB, drag coefficient

Stopping criterion

Pareto confidence reached

Outline

Setup of the Optimization Process

*Overview

Context

Detailed Optimization Setup

Optimization Results

Optimization of the outer airfoil

Optimization of the inner airfoil

Optimization of the wing twist, sweep and dihedral

Summary and Outook

Pareto confidence reached after 18 iterations

- Low boom: high camber airfoil
- Low drag: nearly symmetric

Loudness difference in PLdB

6

5

4

3

2

0

-1

0

20

40

60

Iteration

Low boom case

- Loudness decreased by 0.3 PLdB
- Drag reduced by 3.5%

Low drag case: lift distribution more elliptic

- Less induced drag, total drag decreased by 11.5%
- Generally high loudness

Low drag case

- · Recompression at the wing
- · Strong expansion at the aft part of the signature
- → Higher loudness

Drag difference in %

-6

-8

-10

-12 **-**-1

0

1

DoE

Optimization

3

Pareto confidence reached after 19 iterations

- Low boom:
- Low drag:

6

5

4

3

2

1

-1

0

Loudness difference in PLdB

DoE

Results Optimization of the Wing Twist, Sweep and Dihedral

Pareto confidence reached after 34 iterations

Results Optimization of the Wing Twist, Sweep and Dihedral

Pareto confidence reached after 34 iterations

- Low boom: very similar to baseline with increased incidence at the root
- Low drag: high sweep for the outboard wing

Results Optimization of the Wing Twist, Sweep and Dihedral

Correlation between lift distribution and offtrack loudness

 Lowering the on-track loudness possible by decreasing the incident angle of the airfoils near the wing root

Summary and Conclusions

- Methods developed for the optimization of a supersonic configuration with lift
 - Automatic CATIA to CENTAUR sources
 - Grid deformation based on Ackeret's formula
- Fast convergence of the optimizations
- Improvements compared to baseline geometry
 - Maximum loudness decreased by 0.55 PLdB
 - Inviscid drag decreased by 6%
- Correlation between the spanwise lift distribution and the off-track loudness has been identified

Looking ahead

Optimization of simplified geometries

- Adding geometrical complexity
- Using higher cost CFD methods
- Optimization of the fuselage
- Optimization of configurations with enhanced complexity
 - Full aircraft configurations including tail (pitching momentum trimmed)
 - Engine integration
- Variable fidelity optimizations (Euler and RANS)
- Supersonic natural laminar flow

Acknowlegments

- Gérald Carrier (ONERA)
- Arno Ronzheimer, Gunther Wilke (DLR)
- Ueno et. al (JAXA)
- Low boom community

Thank you for your attention.

Questions?

Backup Slides

Knowledge for Tomorrow

Loudness difference in PLdB

3

2

0

Results Optimization of the Outer Airfoil

Correlation between the aircraft angle of attack and the loudness as well as drag

2.6

2.4

Angle of attack in deg

DoE

Optimization

2.8

3.0

Drag difference in %

0

-2

-4

-6

-8

-10

-12 ⊾ 2.0

2.2

Pareto confidence reached after 19 iterations

- Low boom: nearly symmetric airfoil
- Low drag: high camber airfoil

