

EXPLORE FLIGHT

50

NASA Commercial Supersonics Technology Strategy

David Richwine, Deputy Project Manager for Technology Low Boom Flight Demonstrator Project Peter Coen, Low Boom Flight Demonstration Mission Manager AIAA Aviation, Dallas TX June 19, 2019

Presentation Topics

- Overview: NASA's Aeronautics Strategy
- Barriers to successful supersonic commercial aircraft
- Breaking the sonic boom barrier: The Low Boom Flight Demonstration Mission
- Achieving environmental acceptability:
 - Airport community noise
 - Emissions in the airport area and at high altitudes

NASA Aeronautics

NASA Aeronautics Vision for Aviation in the 21st Century

ARMD continues to evolve and execute the Aeronautics Strategy *https://www.nasa.gov/ aeroresearch/strategy*

Safe, Efficient Growth

Innovation in Commercial

Commercial Transports

in Global Operations

Supersonic Aircraft

Ultra-Efficient

In-Time System-Wide Safety Assurance

Assured Autonomy for Aviation Transformation

U.S. leadership for a new era of flight

Innovation in Commercial Supersonic Flight

WHY? Commercial supersonic flight represents a potentially large new market for aircraft manufacturers and operators world-wide

The government plays a central role in developing the data needed for the regulation change that is essential to enabling this new market

Speed that redefines a 12 hour work day-there and back

with 2 hours minimum on

- Global demand for air travel is growing, which places a demand on speed
- Supersonic aircraft manufacturing offer the opportunity to establish a new market segment with significant export opportunity and high-tech job growth
 - Large potential market predicted: business aircraft followed by larger commercial aircraft
 - Technology leadership established through initial products will lead to development of larger, more capable airliners
- Technologies reducing the environmental impact of supersonic aircraft may benefit subsonic aircraft as well

The Vision for Commercial Supersonic Flight

The emerging potential market has generated renewed interest in civil supersonic aircraft

 Evidenced by the appearance of several commercial programs even with existing restrictions on overland flight and other challenges Overland Flight Restrictions based on unacceptable sonic boom noise are viewed as the main barrier to this vision

 Future supersonic aircraft will not only be able to fly overland without creating an "unacceptable situation" but compared to Concorde and SST will be efficient, affordable and environmentally responsible Standards for Landing – Takeoff Noise and Emissions that protect the environment and support early entrants are key to market development

NASA's Vision supports evolving capabilities for Commercial Supersonics

Thrust 2 Community Outcome 2025 Certification standards for supersonic commercial aircraft including overland flight based on acceptable sonic boom noise and LTO noise and emissions appropriate for technical and economic viability	Thrust 2 Community Outcome 2025+ Introduction of Affordable, Low- Boom, Low-noise, and Low- emission Supersonic Transports	Thrust 2 Community Outcome 2035+ Increased Mission Utility and Commercial Market Growth of Supersonic Transport Fleet
 NASA Research Focus Critical Commitment: Deliver to ICAO a database of community response to quiet supersonic aircraft flight over land Low boom design tools Fundamental data on the characteristics of low noise waveforms in real atmosphere Scientifically valid data on community response to low noise supersonic overflight Additional Research Areas Robust Landing & Takeoff Noise and Emissions tools and technologies 	NASA Research Focus Technologies enabling the first and second generations of supersonic transports with emphasis on acceptable community and en route noise and high altitude emissions	 NASA Research Focus Technologies enabling the first Technologies enabling supersonic transports that are competitive in airline market with emphasis on high efficiency and light weight for improved economics Technologies for supersonic airline to interface with ATM

* Language includes proposed updates to the NASA Strategic Implementation Plan

Barriers to Practical Supersonic Commercial Aircraft

Environmental Barriers

Sonic Boom

- Design for low noise sonic boom
- Understand Community Response

Efficiency Barriers

Efficient Vehicles

 Efficient airframe and propulsion throughout flight envelope

Light Weight, Durable Vehicles

 Low airframe and propulsion weight in a slender flexible vehicle operating at supersonic cruise temperatures

Airport Noise

 Noise levels not louder than subsonic aircraft at appropriate airports

High Altitude Emissions

No or minimal long term impact at supersonic cruise altitudes

Efficient Operations

• Airspace-Vehicle interaction for full utilization of high speed

Solutions to Barriers Drives Selection of Research Themes

Overcoming the Barrier to Overland Flight

The Low-Boom Flight Demonstration Mission is specifically planned to generate key data for success in NASA's Critical Commitment to support development of en route certification standards based on acceptable sound levels

- New Environmental Standards are needed to open the market to supersonic flight
- An En route Noise Standard is the biggest challenge
 - Requires proof of new design approaches
 - Must replace current prohibitions
 - No relevant data on exists to define limits
 - Community data from large, diverse population is a requirement
 - Standard must be accepted internationally

Delivering on the Thrust 2 Critical Commitment

Key Elements:

- Integrated Design Solutions for Revolutionary High-Speed Aircraft that provide the foundation for low-sonic boom aircraft design (complete 2015)
- Validated Hardware for overflight testing (supersonic acoustic signature generator)
 - Design, build and confirm the airworthiness of a Low Boom Demonstrator with acoustic characteristics representative of a commercial supersonic transport aircraft
 - Validate acoustic signature of the LBFD aircraft
- Development of Test Methodology that allows data to be gathered that accurately represents the community response to supersonic overland flight
- Community Response Data that is fully representative of a demographically diverse, non-biased population

Low Boom Flight Demonstration Mission Overview

Phase 1 – Aircraft Development – FY18 – 22

- Detailed Design
- Fabrication, Integration, Ground Test
- Checkout Flights
- Subsonic Envelope Expansion
- Supersonic Envelope Expansion

Phase 2 – Acoustic Validation – FY22-23

- In-flight and ground measurement capabilities
- Aircraft Operations / Facilities

Phase 3 – Community Response (FY23-25)

- Initial community response overflight study based at NASA AFRC
- Multiple campaigns (4 to 6) over representative communities and climate across the U.S.

Systematic Approach Leading to Community Testing

Prediction Tools Validation

Challenge

In preparation for community response testing, NASA will provide a suite of prediction tools to support timely and accurate validation of the acoustic performance of the LBFD aircraft, rapid pre-flight exposure planning for Community Testing, and provide a foundation for future configuration design and certification analysis of supersonic aircraft.

Key Deliverables

- High fidelity prediction toolset with quantified uncertainty
- Pre-test analysis supporting LBFD Acoustic Validation flights
- Near-real-time prediction capability for Community Response Test planning
- Data and tools based on rich LBFD data set supporting ٠ future design and certification efforts

Detailed presentations in sessions APA-21 and APA-25

High Fidelity CFD

Advanced Air-Air Schlieren Imaging

In Flight Acoustic Validation Measurement Capabilities

Challenge

- Develop and demonstrate LBFD Mission Phase 2 capabilities to safely measure in-flight:
 - Near-field acoustic characteristics of the LBFD aircraft
 - Atmospheric effects on the far-field acoustic pressure signatures

Key Deliverables

- F-15D flight research instrumentation system
- Shock Sensing Probe for F-15D
- System for safe and efficient relative positioning of test and measurement aircraft (ALIGNS)
- Acoustically instrumented TG-14 aircraft
- Advanced pod-mounted schlieren imaging system

SSP integrated with NACA hardware

Acoustic Validation Test Planning and Execution

Challenge

- Plan and execute a test series to validate ground acoustic signature loudness is acceptable for community response testing and to gather airborne and ground data that will be used to anchor sonic boom propagation and acoustics models in a real atmosphere.
- Coordinate multiple ground and flight assets to efficiently gather multiple data types

Key Deliverables

- · Ground equipment for an unprecedented scale of measurements
 - Data for entire "carpet" under the flight track plus longitudinal array for turbulence effects
- Acoustic validation flight test plans
- · Ground and air-air data collection and processing
 - Near/mid-field probing
 - Far-field and ground acoustic
 - Schlieren Imaging

Community Test Planning

Objective: Create a robust dose – response relationship for community annoyance vs appropriate noise metrics

- Large populations, large number of representative responses.
 - 10k to 100k, depending on survey method employed
 - Varied community settings including representative:
 - Geography and climate
 - Home and building construction
 - Community demographics, etc.
- A range of exposures required, possibly including normal booms
- Up to a maximum of 6-8 of daily exposures
 - Night exposures may be required
- Sufficient test duration to establish effect of repeated exposure
- Account for test aircraft operational limitations
 - Airfield facilities
 - Scheduled and unscheduled maintenance and downtime
- 4-6 test campaigns in different locations
- Engage the international research & regulatory community to ensure data acceptance

Planning began in 2019 to support first community test in 2023

Risk reduction test completed in 2018, details in presentations by Cliatt and Rathsam , APA-21

Pulling it all together: Notional LBFD Mission Timeline

Environmental Acceptability: Airport Noise

16

Focused Technical Challenge on jet noise reduction completed in FY16

Integration of noise prediction, innovative nozzles, and system modeling to achieve aggressive goals. 2013 2014 2015 2016 Multiple jet acoustic effect Aft-deck noise database Final isolated nozzles, system Three-stream nozzle and IVPv2 models validated. documented, modeled. tests completed. acquired. Non-axisymmetric jet noise code Optimized engine cycle Integrated acoustic test IVPv2 tests meet expectations determined. articles created and tested. created. First empirical models for three-System predictions, acoustic Final candidate nozzles created. IVPv2 design confirmed with LES. stream and IVP nozzle systems goal validated.

Efforts continue in active Research Theme

- Elements include: Integrated solutions including inlet and fan noise, Innovative concepts, Tools and techniques and Experimental Validation
- Future focused efforts anticipated to start in FY21

Top-mounted propulsion study concept

Environmental Acceptability: Emissions

- CST has worked in partnership with NASA's subsonic research efforts to experimentally and analytically
 explore the applicability of advanced combustor technology to emissions reduction for supersonic aircraft
- NASA has engaged MIT to develop and improve global high altitude emission models and study impacts from future supersonic fleet scenarios
- An optimal technology suite has been identified
 - Lean-burn offers 1/3-1/2 less NOx and almost no nvPM emissions at cruise than rich-burn
 - Combustor design optimized for supersonic cruise, but enabled for landing-and-takeoff (LTO) low emissions
 - Next-gen CMC combustor liner with minimal cooling to reduce flame temperature
 - Optimized fuel composition control; alternative fuel opportunities
- Next steps
 - Identify partnership approaches for materials and fuels research
 - New Technical Challenge for supersonic specific combustor design anticipated in FY21

Test Hardware

Near-term efforts: LTO Noise and Emissions Standards

- Emergence of near-term market entrants has spurred at need for certification standards
- FAA and ICAO are engaged in parallel, coordinated processes
- In addition to company data, both organizations need independent analysis and trade study data to inform the standards process
- NASA is supporting this effort with the development of Supersonic Technology Concept Aeroplanes (STCA)
 - Effort is coordinated with Industry for consensus on methods and assumption
 - Scope includes assessment of advanced procedures and technology/design trades
- NASA effort also includes targeted testing and analysis to reduce uncertainty in noise models

Details to be presented at SciTech 2020

NASA developed

derivative engine model

55-tonne STCA study design

Summary

- NASA's Strategic Plan for Aeronautics calls for leadership in Innovation in Commercial Supersonic Flight
- Near-term focus in on overcoming the technical and regulatory barriers to quiet supersonic flight over land
 - Critical Commitment to deliver data to ICAO on community response to quiet overflight sounds
- The development of a new supersonic X-plane is the core of the NASA's Low Boom Flight Demonstration Mission
 - Coordinated development of tools, test hardware and methodology is key to success
- Planning for community overflight tests is underway
 - NASA seeks to engage the international community to insure broadest applicability of data
- NASA analysis and independent data is supporting near-term standards development that will help industry realize a supersonic commercial market
- NASA's strategy also includes addressing longer term research leading to the development of increasingly capable supersonic commercial aircraft