

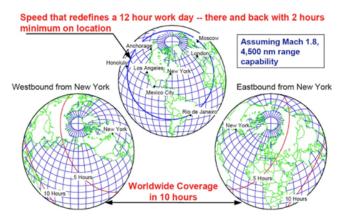
Status and Plans for NASA's Low Boom Flight Demonstration

Peter Coen & David Richwine

NASA Aeronautics Research Mission Directorate

AIAA Aviation Conference June 2017 Denver CO

www.nasa.gov


Outline

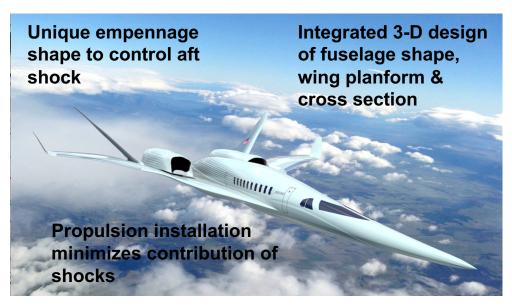
- Introduction
- Sonic Boom Reduction and Supersonic Overland Flight
- LBFD Timeline
- Preliminary Design & Requirements
- Community Response Testing
- Collaboration Opportunities
- Summary

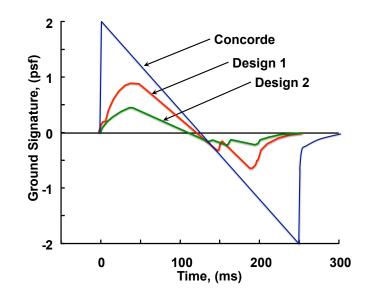
Innovation in Commercial Supersonic Flight

- Why?: Commercial supersonic flight represents a potentially large new market for aircraft manufacturers and operators world-wide
 - Global demand for air travel is growing, which places a demand on speed.
 - Supersonic aircraft will be excellent export products that can be capitalized on by the US to support a positive balance of trade
 - New supersonic products lead to more high-quality jobs in the US.
 - Large potential market predicted: business aircraft followed by larger commercial aircraft
 - Technology leadership established through initial products will lead to development of larger, more capable airliners.
- The government plays a central role in developing the data needed for regulation change that is essential to enabling this new capability.

From Boom to Thump: The Quiet Supersonic Design Technical Challenge

Objective


 Develop and validate tools and design approaches to enable the development of supersonic airliners with very little perceived supersonic noise: 60 dbA ~ 35 less than Concorde or typical military aircraft


Approach

- Build on 40+ years of research in sonic boom minimization
- Improve usability, accuracy and speed of high fidelity analysis tools for inclusion in the design process
- Develop new near-field & ground signature design targets that produce less noise, and allow more flexibility in the design process
- Conduct validation studies in wind tunnels and in flight

Technical Challenge completed in FY 2015

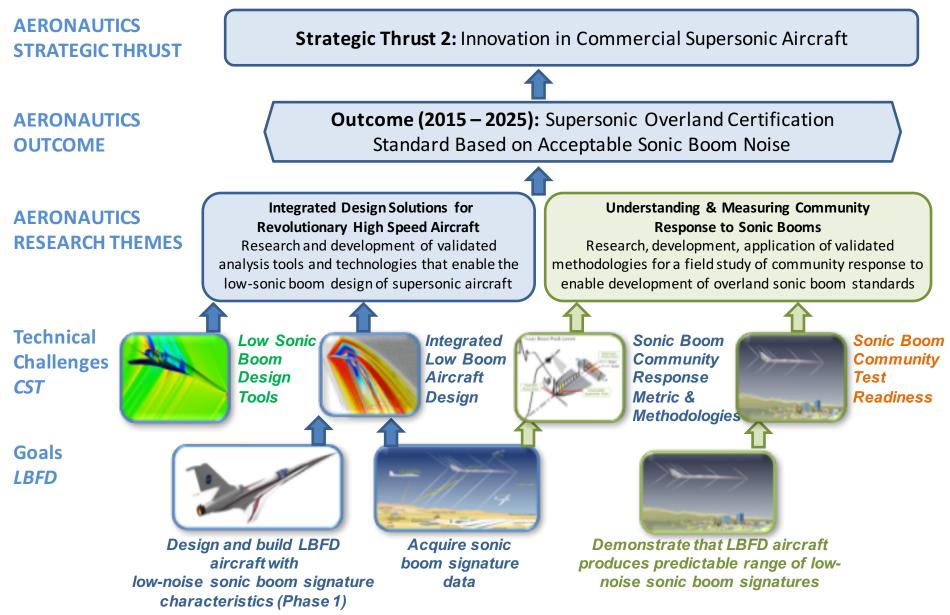
• Breakthrough technology development validated in wind tunnels, ready for flight demonstration

The Next Step

Overcome the sonic boom barrier and open the door for development of a new generation of environment-friendly supersonic civil transport aircraft

Overall Requirement

Approach


- Demonstrate that noise from sonic booms can be reduced to a level acceptable to the population residing under future supersonic flight paths.
- Create a community response database that supports an International effort to develop a noise based rule for supersonic overflight

Credit: Lockheed Martin Corporation

- Revitalize the excitement of manned X-Planes using a focused and cost-effective approach to design and operate a low boom research aircraft
- Partner with industry and government agencies to formulate, obtain approval, and execute QueSST
- Partner with regulatory agencies and communities to create a roadmap for community response study and rule development

LBFD Supports NASA Strategic Thrust in Commercial Supersonic Flight

LBFD Timeline

2013 - 2014	Concept Exploration Studies	
2014 - 2015	Concept Refinement Studies	
Feb 2016	QueSST Preliminary Design contract awarded to Lockheed- Martin as part of NASA's New Aviation Horizons Initiative	
Jun 2017	Preliminary Design Review	
Jun 2017	LBFD Design/Build/Test Draft RFP released	
Aug 2017	LBFD Design/Build/Test RFP release anticipated	
1 st qtr CY 18	LBFD Design/Build/Test contract award	
3 rd qtr CY 19	O Critical Design Review	
1 st qtr CY 21	1 First flight	
4 th qtr CY 21	or qtr CY 21 Envelop expansion complete	
3 rd qtr CY 22	Low boom acoustic signature validation complete	
1 st qtr CY 23	Initial community response test (based at NASA AFRC)	
2023 - 2025	Community response tests in US (remote based)	

Dates in blue test are estimated and dependent on approval and funding *Italic text denotes element of the LBFD project follow on*

Overview of QueSST Aircraft Design Features 👧

COTS engine and nozzle reduce complexity and cost

Wing Shielding to reduce impact of inlet spillage on sonic boom , C

Canopy, Seat, and Crew Escape Systems Workable moldline and minimizes qualification costs

> Extended Nose with area shaping to reduce forward\shock

Conventional Tail Arrangement simplifies stability and control challenges

Fixed Canard provides nose-up trim

QueSST Preliminary Design has identified aircraft costeffective solution to meet the low-boom design requirements

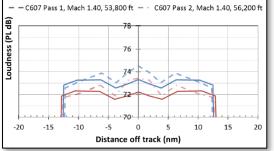
QueSST Preliminary Design Elements

REVIEWS / MILESTONES

Aircraft System Requirements Review (ASRR)

Configuration Release A / Trade Studies and Assessments

Pre-PDR Technical Interchange Meeting

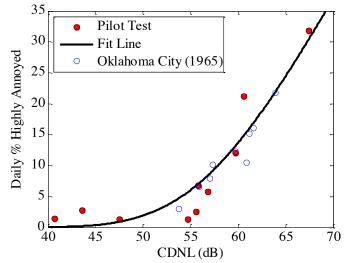

NASA Flight System(s) Conceptual Design Reviews, Workshops, Working Groups

Configuration Release B / Trade Studies and Assessments

High-Speed Wind Tunnel Tests in GRC 8x6 (Aero & PAI)

Preliminary Design Review

LBFD/QueSST Design Requirements Linkage to Community Test Requirements

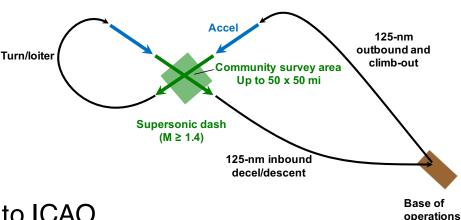

	Sonic Boom Characteristics	
1	The QueSST aircraft shall generate a predicted undertrack sonic boom ground signature with peak acoustic energy occurring at a frequency no greater than 10 Hz , at design supersonic cruise, with static rigid-body trim conditions.	
2	The QueSST aircraft shall generate a fully shaped (forward and aft) sonic boom ground signature, at design supersonic cruise, static rigid-body trim conditions, with a predicted maximum calculated loudness level of less than or equal to 75 PLdB throughout the lateral limits (\pm 40 deg) of the nominal supersonic cruise boom carpet.	
3	The QueSST aircraft shall be able to generate repeatable variations in the predicted ground carpet signature between 70 - 80 PLdB within the lateral limits (\pm 40 deg) of the nominal supersonic cruise boom carpet.	
4	The QueSST aircraft predicted undertrack sonic boom ground signature shall not exceed a mean value of 76 PLdB and not vary more than 1.4 PLdB RMS about that mean value during a single design supersonic cruise pass due to predicted deviations in the aircraft state and configuration under random atmospheric turbulence at a RMS turbulence amplitude of 1 ft/sec.	
	Mission Performance & Operation	
6	The QueSST aircraft shall perform a minimum of two supersonic cruise passes of at least 50 nm in length, spaced a minimum of 20 minutes apart , over a single community area during a single flight with standard day environmental conditions.	
7	The QueSST aircraft shall perform a minimum of three flight operations of the baseline mission, from engine startup to engine shutdown, over a 9-hour time span .	
8	The QueSST aircraft shall be equipped to perform day and night flight operations in the public airspace.	
12	The QueSST aircraft shall perform the baseline mission using QueSST-specific hot day environmental conditions for mission performance.	

Quiet Supersonic Overflight Community Test Concepts and Objectives

Objective: Create a robust dose – response relationship for community annoyance vs appropriate noise metric(s)

- Large populations, large number of representative responses.
 - 10k to 100k, depending on survey method employed
 - Varied community settings including representative:
 - Geography and climate
 - Home and building construction
 - Community demographics, etc.
- A range of exposure levels will be required, possibly including normal booms
- Up to a maximum of 6-8 of daily exposures
 - Night exposures may be required
- Sufficient test duration to establish effect of repeated exposure
- Account for test aircraft operational limitations
 - Airfield facilities
 - Operations tempo

Notional Dose-Response Relationship


LBFD Mission Requirements and Community Test Assumptions

Derived Mission Requirements

No.	Sonic Boom Characteristics	No.	Performance & Operations
1	Ground Signature Traceability	6	Pass length (50 n.mi) and number per flight (2)
2	Ground Signature Loudness	7	Flight rate (3 flights in a 9 hour span)
3	Ground Signature Variability	8	Day/Night operations
4	Cruise Deviations	12	Mission Performance (hot day)

Current Assumptions for Planning

- 1 LBFD Aircraft
- Initial community test from EAFB
 - Primary focus on test techniques
 - Collect valid community response data
- 4-6 Deployed community tests
 - Different geographical locations
- 2 tests per year with yearly reports to ICAO
- Opportunities for validation and procedure development flights between deployments

Proposed Flight Track Option–Figure 8

Collaboration Opportunities

- NASA's overarching goal is to obtain the data required to impact regulatory change
- Envision significant NASA partnerships with industry, academia, and international partners during acoustic validation and community response testing
 - Turbulence effects and modeling
 - Development of test protocols and procedures
 - Ground and atmospheric measurements
 - Development and validation of certification procedures and metrics
 - Community response testing

Summary

- NASA Aeronautics conducts research to enable supersonic flight as a future transportation capability
- Sonic boom reduction technology creates an opportunity to overcome a barrier to supersonic transportation
- NASA is planning the Low Boom Flight Demonstration as the next step in overcoming this barrier
- Preliminary Design is underway
- Detail Design/Built/Test planning and RFP development is in progress
- Community Response Test planning and risk reduction is also in progress
- NASA seeks to engage partners and the community in the next steps of LBFD

Questions?

NAS

Forum 360 Events Tuesday 2:00 Supersonic Transport Friday 9:30 NASA New Aviation Horizons

Credit: Lockheed Martin Corporation