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Motivation
• Commercial	supersonic	overland	flight	is	
currently	prohibited
– Supersonic	overland	flight	is	an	enabler	for	entry	
into	new	vehicle	market

• An	international	effort	to	quantify	the	
accuracy	and	reliability	of	prediction	methods	
supports	the	replacement	the	prohibition	with	
a	certification	standard	

• Deficiencies	in	existing	methods	should	be	
noted	to	focus	research	on	addressing	
weaknesses
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Motivation
• Nearfield CFD	is	part	of	
sonic	boom	prediction

• Impartially	compare	
signatures	by	uniform	
investigation	of
– Propagation	and
Loudness	measures

– Grid	refinement
– Statistics
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Models	and	Cases

• Designed	to	produce	similar	signatures	with	a	
range	of	simulation	complexity

• Mach	1.6
• Euler	and	Reynolds-averaged	Navier-Stokes	
(RANS)	at	flight	unit	Reynolds	number	of	5.7	
million	per	meter	requested

• US	Standard	atmosphere	at	15,760	meter	
altitude

• Propulsion	boundary	conditions	provided
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C25F	(shown)	and	C25P

5

Developed	in	AIAA-2016-2260	and	
AIAA-2016-2261	with	Euler	method

• C25F	flow-through	
nacelle	(required)

• C25P	powered	
configurations	(optional)



JWB
• Inverse	design	to	
recover	C25F	equivalent	
area	distribution	by	
JAXA	with	Euler	and	
panel	methods
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AXIE
• Inverse	design	to	
recover	C25F	nearfield	
at	3	body	lengths	by	
Anderson	and	Aftosmis
with	Euler	method
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Nearfield	Ensemble	Mean	R=3,	PHI=0°
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C25P	Pressure	Disturbance

dp/pinf
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C25F	Pressure	Disturbance

dp/pinf
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JWB	Pressure	Disturbance

dp/pinf
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AXIE	Pressure	Disturbance

dp/pinf



AXIE,	C25F,	and	C25P	Provided	Grids

• Mixed	element	and	tetrahedra only	families	of	
core	grids	with	semistructured Mach-aligned	
collar	grids	(same	as	SBPW1,	see	AIAA-2014-
115)
– 0.6	to	56	million	node	Euler	AXIE	(5)
– 3-104	million	node	Euler	C25F	(6)
– 5-138	million	node	viscous	C25F	(6)
– 3-52	million	node	Euler	C25P	(5)
– 5-70	million	node	viscous	C25P	(5)
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JWB	Provided	Grids

• HeldenMesh generated	surface	and	
tetrahedral	volume	grids	with	anisotropic	
Mach-aligned	spacing	function	in	a	single	grid	
topology
– 6,	11,	and	18	million	node	Euler	JWB	(3)
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Participant	Grids

• Participants	also	provided	grids	based	on	their	
best	practices
– Grids	received	before	the	workshop	were	
available	as	optional	grids

• A	series	of	three	grids	was	requested	from	
participants	with	adaptive	methods
– Final	grid	and	two	coarser	intermediates
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• Subjective	metrics
• These	human	experiences	are	correlated	to	
noise	descriptors	through	experiments
– Leatherwood	et	al.	JASA	2002
– Stevens	Mark	VII	Perceived	Level	(PL)

Loudness	and	Annoyance
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Expected	Grid	Convergence

• Consistent	methods	should	approach	a	value	
as	the	grid	is	refined	to	“zero”	h	(inverse	cube	
root	of	CFD	control	volumes,	propagation	
fixed)
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Characteristic	Grid	Length	(h)

Second-order

First-order



AXIE	PL	Grid	Convergence
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• Participant	D	reported	that	the	collar	grid	construction	was	
not	optimal	for	their	solver

• Participant	C	reported	iterative	convergence	difficulties	in	the	
collar	grid,	but	not	at	the	extraction	location		

Euler
RANS



AXIE	Grid	Convergence,	R=5
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• A	norm	of	the	signature	is	treated	like	the	PL	scalar	and	the	
signature	is	pointwise	extrapolated	(Richardson,	Roache)	from	
three	grids	to	infinitely	refined	grid	(h=0)

• The	red	area	is	the	extrapolation,	largest	at	shocks
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AXIE	Grid	Convergence,	R=5
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• A	norm	of	the	signature	is	treated	like	the	PL	scalar	and	the	
signature	is	pointwise	extrapolated	(Richardson,	Roache)	from	
three	grids	to	infinitely	refined	grid	(h=0)

• The	red	area	is	the	extrapolation,	confirming	divergence
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JWB	PL	Grid	Convergence,	PHI=10°
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• JWB	has	the	strongest	expansion	and	extraction	distance	
sensitivity

• JWB	grid	construction	different	from	other	models
• JWB	showed	the	greatest	reconstruction	limiter	sensitivity

Euler
RANS



C25F	PL	Grid	Convergence,	PHI=0°
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• Trend	change	for	the	finer	meshes	(new	physics)
• RANS	has	more	fine	grid	variation	than	Euler	(smaller	grids)
• C25P	has	similar	trends	(when	updates	after	the	workshop	
included)

Euler
RANS



Statistical	Method

• Goal	is	to	identify	“different”	
results,	not	“correct”	or	“wrong”

• Box	(half	of	submissions)	and	
whisker	plots	(95%	coverage	for	
normal	distribution)

• Used	by	Drag	Prediction	Workshop	
(AIAA-2017-1209)
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PL	Euler	from	R=3
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C25F	and	C25P	from	R=3
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Progress	Since	SBPW1
• Much	quieter	mean	PL	(dB)
– SBPW1:	91.8	axisymmetric,	95.5	wing	body
– SBPW2:	77.7	axisymmetric,	79.4	wing	body

• Standard	deviation	is	difficult	to	compare,	PL	(dB)	
is	logarithmic
– SBPW1:	0.3	axisymmetric,	0.2	wing	body
– SBPW2:	0.6	axisymmetric,	1.4	wing	body

• More	complex	and	more	submissions
– Statistics	for	required	full	configuration
– Optional	propulsion	boundary	condition	case
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LM1021	PL	Carpet,	R=1.4

PHI	(deg)
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C25F	RANS	PL	Carpet,	R=1
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C25F	Euler	PL	Carpet,	R=1



Conclusions

• PL	trends	with	grid	refinement	were	shown	for	
the	AXIE,	JWB,	and	C25F
– AXIE	convergence	the	best	with	outliers	at	R=5
– AXIE	observations	at	R=5	confirmed	with	
examination	of	nearfield	signature	convergence

– JWB	had	a	larger	variation	than	the	more	complex	
C25F	
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Conclusions

• PL	statistics	visualized	with	box	and	whisker	
plots
– Euler	and	RANS	analyzed	separately	when	
sufficient	samples	available

– The	size	of	the	box	(middle	50%)	was	largest	for	
the	JWB	Euler

– RANS	has	larger	box	than	Euler	for	C25F	and	C25P
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Conclusions

• Progress	made	since	the	first	workshop	
identified
– Simple	cases	much	quieter
– JWB	had	a	larger	standard	deviation,	but	PL	
logrithmic

– Statistics	available	for	complex	C25F	and	C25P
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In	the	Paper

• Grid	convergence	of	nearfield	submissions
– Confirms	and	explains	the	trends	shown	in	PL

• Pointwise	mean	and	standard	deviation	of	
nearfield	submissions
– Euler	and	RANS	nearfield	differ	by	more	than	one	
standard	deviation	in	many	important	locations

• Lift	and	iterative	convergence
– Euler	and	RANS	lift	approach	different	values	with	
grid	convergence
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In	the	Paper

• Details	of	required	grid	families
• Summaries	of	participant	presentations
• Discussion,	recommendations,	and	next	steps	
toward	SBPW3
– Quieter	SBPW2	cases	exposed	issues	not	seen	in	
SBPW1	

– Quieter	configurations,	ideally	at	or	below	75	PL	(dB)
– Additional	research	needed	to	reduce	sensitivity	to	
convection	scheme

– Establishing	benchmark	(archived	submissions)	
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Perceived	Level	(PL)	

• Signature	sound	pressure	
level	is	gathered	into	1/3	
octave	bands

• Band	levels	are	
converted	into	sones
(loudness)

• Sones from	each	band	
are	combined

• Sones are	converted	into	
PL	via	logarithm



Nearfield Plotting

• Tau	is	distance	from	freestream Mach	cone	
originating	at	tip	of	nose

• Delta	pressure	divided	by	freestream pressure	
is	scaled	by	the	square	root	of	radius in	body	
lengths
– Signatures	at	different	radii	readily	comparable	
and	“aging”	effect	observed
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