Adjoint-based Mesh Adaptation for the Sonic Boom Signature Loudness

Sriram K. Rallabhandi
(Aeronautics Systems Analysis Branch, ASAB)
Michael A. Park
(Computational Aero-Sciences Branch, CASB)

NASA Langley Research Center
Outline

• Introduction and Motivation
• Background
 • FUN3D
 • sBOOM
 • FUN3D-sBOOM coupling
 • Adaptation for loudness
• Results
 • Case1: Biconvex Airfoil
 • Case2: Airfoil with Complex Near-field
 • Case3: Axi-Symmetric Body
 • Case4: Low Boom Concept
• Summary
• Conclusions
Introduction and Motivation

- Commercial supersonic flight overland requires overcoming sonic boom annoyance

- Sonic boom prediction involves:
 - CFD simulation (Inviscid or viscous) near the aircraft to generate an off-body pressure waveform termed as “near-field”
 - Atmospheric propagation where the pressure disturbances are modeled as they reach the ground
 - Possibly under prevailing atmospheric conditions including winds
 - Standard atmosphere assumed as U.S. Standard Atmosphere (1976) with guidance on humidity profiles
 - Noise analysis
 - Frequency spectrum (1/3-octave frequency bands)
 - Multiple metrics: Perceived Level (PL) and A-weighted Sound Exposure Level (ASEL) is used in this study
Introduction and Motivation

\[S_t = S_m + F(\Sigma S - S_m) \]

\[PL = 32 + 9 \log_2(S_t) \]

Introduction and Motivation

- Perceived level (PL) is the generally accepted quantitative measure of sonic boom
 - Decibels are logarithmic
 - CFD mesh and atmospheric propagation sampling requirements increase as signals get quieter
 - Specialized boom meshes (INFLATE1, MCAP2, Boom Grid3) may or may not be sufficient
 - Adjoint-based mesh adaptation offers a way to generate suitable meshes for the output being optimized
- PL metric not amenable to differentiation
- A-weighted Sound Exposure Level (ASEL) has been shown to be well correlated4 with PL for outdoor sonic booms

FUN3D
http://fun3d.larc.nasa.gov

- Established as a research code in late 1980s; now supports numerous internal and external efforts across the speed range
- Solves 2D/3D steady and unsteady Euler and RANS equations on node-based mixed element grids for compressible and incompressible flows
- General dynamic mesh capability: any combination of rigid / overset / morphing grids, including 6-DOF effects
- Aeroelastic modeling using mode shapes, full FEM, CC, etc.
- Constrained / multipoint adjoint-based design, mesh adaptation
- Distributed development team using agile/extreme software practices including 24/7 regression, performance testing
- Capabilities fully integrated, online documentation, training videos, tutorials
sBOOM

- Propagation based on lossy Burgers equation
- **Features**
 - Under-track, off-track signatures, Horizontally stratified winds, Acceleration, turn-rates, climb-rates
 - **Adjoint-based design capability**
 - Near-field dp/p matching
 - Ground loudness optimization/ Target/ EA matching
 - Target equivalent area generation
 - Atmospheric sensitivities

Recent sBOOM enhancements
- Boom focusing calculations, interfacing with non-linear Tricomi solver

sBOOM is under active development. Contact Sriram.Rallabhandi@nasa.gov or Lori.Ozoroski@nasa.gov to get a copy of sBOOM.
FUN3D-sBOOM Coupling

• Input to sBOOM is represented by a transformation (T) that maps CFD solution to the desired pressure distribution

\[p_0 = T(Q, X) \]

• Lagrangian

\[L(D, Q, X, \Lambda_f, \Lambda_g, \Lambda_b) = J + [\Lambda_g]^T G + [\Lambda_f]^T R + [\Lambda_b]^T (p_0 - T) \]

• System of adjoint equations

\[
\begin{align*}
\left[\frac{dJ}{dp_0} \right]^T + \Lambda_b &= 0, \\
\left[\frac{\partial R}{\partial Q} \right]^T \Lambda_f - \left[\frac{\partial T}{\partial Q} \right]^T \Lambda_b &= 0, \\
\left[\frac{\partial G}{\partial X} \right]^T \Lambda_g + \left[\frac{\partial R}{\partial X} \right]^T \Lambda_f - \left[\frac{\partial T}{\partial X} \right]^T \Lambda_b &= 0.
\end{align*}
\]

• Desired sensitivity derivatives

\[\frac{\partial L}{\partial D} = [\Lambda_g]^T \frac{\partial G}{\partial D} + [\Lambda_f]^T \frac{\partial R}{\partial D} \]

• Current state-of-the-art: Integral of quadratic pressure deviation functional

$$f = \int_I \left(\frac{p - p_\infty}{p_\infty} \right)^2 dl.$$

• Near-field pressure waveform is a heuristic of ground loudness
RESULTS
Case 1: 2D Diamond Airfoil

- When enough mesh was provided, dpp adaptation and ASEL adaptation gave identical results
 - Constraining the mesh to differentiate the schemes

- Meshes
 - More refinement in the wake for ASEL adaptation
 - Regions above the geometry also refined in ASEL adaptation
 - Refined farther into the domain with ASEL adaptation
Case 1: 2D Diamond Airfoil

- Remaining error drops three orders of magnitude for ASEL adaptation, and 2 orders for dpp
- Minor differences observed in loudness convergence
Case 2: Airfoil with Complex Flow-field

- 2D case with a complex flow-field that can produce low boom
- Used supersonic small perturbation theory to inverse design airfoil
Case2: Effect of Mesh

- dpp Adaptation - Coarse
- dpp Adaptation - Refined
- ASEL Adaptation - Coarse
- ASEL Adaptation - Refined
Case 2: Cell Size Projection During Adaptation

- **dpp Adaptation**
 - After 5 cycles
 - After 20 cycles

- **ASEL Adaptation**
 - After 5 cycles
 - After 20 cycles
Case 2: Moderate Mesh

The graph shows the variation of $\delta p/P$ and $d(\delta p/P)$ along the X-axis (in feet). The lines represent different simulations or conditions:
- **Red line**: dpp_Adaptation_40
- **Blue line**: ASEL_Adaptation_40
- **Green line**: Adjoint_Gradient_40

The graph illustrates the detailed comparison and analysis of these conditions across different X-values.
Case 2: Error Convergence and Signatures

Coarse Mesh

Medium Mesh

Fine Mesh
Case3: Axi-Symmetric Body of Revolution

- For a 3D case, the overall adaptation behavior is similar
 - Higher refinement in aft and above the body for dpp adaptation
 - Different from the 2D case before
Case 3: Axi-Symmetric Body of Revolution

- Loudness convergence is achieved earlier with smaller meshes for ASEL adaptation
Case3: Axi-Symmetric Body of Revolution

- dpp adaptation picks up on shocks sooner than ASEL adaptation
- ASEL adaptation quickly “catches-up” to dpp adaptation
- First two shocks are better resolved using ASEL adaptation with smaller overall meshes
Case 4: Low Boom Concept

- A low-boom demonstrator concept analyzed via mesh adaptation
- 8 adaptation cycles were run, to achieve loudness convergence
- ASEL from dp/p adaptation is within 0.5 dB, but not converged on the loudness scale
- With the same mesh growth guidance, ASEL adaptation has slightly larger mesh starting from adaptation cycle = 4
- Mesh size increased from 31M nodes to ~240M nodes
Case 4: Low Boom Concept

- Differences observed in the near-field pressure waveform
- ASEL adaptation captures the smaller peaks better, while dp/p resolves the larger shocks crisply
- Ground signatures visually similar
 - ASEL build-up shows steeper shocks of ASEL adaptation compared to dp/p adaptation
 - Proximity of loudness from ASEL adaptation to baseline is fortuitous
Summary/Conclusions

- Demonstrated adjoint-based mesh adaptation for sonic boom loudness on multiple cases
- Current state-of-the-art for mesh adaptation is an off-body pressure functional, a heuristic or surrogate of low boom
- Using ASEL-based adaptation implicitly weighs regions of the pressure waveform based on their importance to loudness metrics
 - If detailed information is known of the underlying concept, dp/p adaptation may impose weights along the sensor accordingly
- More work is needed to show applicability in 3D simulations over realistic concepts
- ASEL adaptation may be used in conjunction with dp/p adaptation
Future Work

• Future Work
 • Leverage FUN3D development toward simultaneous mesh adaptation and design to generate suitable adapted meshes during design for minimizing sonic boom
 • During ASEL adaptation, sBOOM grid is fixed i.e. sBOOM does not contribute to the error to drive adaptation.
 • Enhance sBOOM to work with non-uniform grids and contribute towards adaptation error correction
 • Use ASEL sensitivities as weights to drive \(\frac{dp}{p} \) adaptation
Acknowledgments

- NASA Commercial Supersonic Technology (CST) project
- Aeronautics Systems Analysis Branch (ASAB), NASA Langley
- Irian Ordaz – Initial gridding process using AFLR2/AFLR3 for 3D cases
- Michael Aftosmis for valuable feedback/suggestions
Questions?
BACKUP-SLIDES
Case 2: Refined Mesh
Case 3: Axi-Symmetric Body of Revolution

- Result from ASEL adaptation has higher front loudness compared to dpp adaptation
Case 3: Error Convergence

![Graph showing error convergence with respect to mesh nodes. The y-axis represents remaining error on a logarithmic scale, and the x-axis represents mesh nodes ranging from 10^6 to 10^7. Two curves are shown: dpp_Adaptation and ASEL_Adaptation. The dpp_Adaptation curve starts higher and decreases more sharply compared to ASEL_Adaptation.]