

### Application of Adjoint Methodology in Various Aspects of Sonic Boom Design

Sriram K. Rallabhandi, National Institute of Aerospace

In support of NASA High Speed Project

- AIAA Aviation 2014
- Sonic Boom Activities III
- June 17, 2014

#### Outline



- Current status of adjoint shape optimization applied to sonic boom mitigation
- Goals
- Extension to boom adjoint theory
- Verification of adjoint sensitivities
- Results
- Discussion
- Summary

# Current Status: Adjoint-Based Shape Optimization for Sonic Boom Mitigation



# Current Status: Adjoint-Based Shape Optimization for Sonic Boom Mitigation





# Current Status: Adjoint-Based Shape Optimization for Sonic Boom Mitigation

![](_page_4_Picture_1.jpeg)

![](_page_4_Figure_2.jpeg)

#### Goals

![](_page_5_Picture_1.jpeg)

Extend sonic boom propagation utility (sBOOM<sup>1,2</sup>) to:

- Generate target equivalent areas using adjoint sensitivities
  - Targets at multiple azimuths in the neighborhood of the baseline design
  - Efficient compared to non-gradient based optimization approaches
- > Obtain sensitivity of sonic boom metrics to:
  - Flight conditions
  - Propagation parameters
  - Atmospheric quantities

<sup>1</sup>Rallabhandi, S. K., "Advanced Sonic-Boom Prediction Using the Augmented Burgers Equation", Journal of Aircraft, Vol. 48, pp: 1245-1253, 2011 <sup>2</sup>Rallabhandi, S. K., Nielsen, E. J., Diskin, B., "Sonic-Boom Mitigation Through Aircraft Design and Adjoint Methodology", Journal of Aircraft, Vol. 51, pp: 502-510, 2014

#### **Discrete Boom Adjoint Formulation**

![](_page_6_Picture_1.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_3.jpeg)

#### Derivative of the Lagrangian

![](_page_6_Figure_5.jpeg)

| $k_n$ – Blokhintzev scaling term         |
|------------------------------------------|
| $A^n, B^n - N_2$ Relaxation matrices     |
| $A_2^n, B_2^n - O_2$ Relaxation matrices |
| $A_3^n, B_3^n$ – Absorption matrices     |
| $f(t_n)$ – Nonlinear terms               |

#### **Boom Adjoint Equations: Existing Theory**

![](_page_7_Picture_1.jpeg)

- Sonic boom discrete-adjoint equations:  $A^{n}q_{n} = k_{n}B^{n}p_{n-1}$   $A^{n}_{2}r_{n} = B^{n}_{2}q_{n}$   $A^{n}_{3}t_{n} = B^{n}_{3}r_{n}$   $p_{n} = f(t_{n})$  Mog  $A^{n}_{n}A^{n}_{3} = \lambda^{T}_{n}\frac{\partial f_{n}}{\partial t_{n}}$   $\gamma^{T}_{1,n}A^{n}_{2} = \beta^{T}_{n}B^{n}_{3}$   $\gamma^{T}_{0,n}A^{n} = \gamma^{T}_{1,n}B^{n}_{2}$ 
  - Cost functions:

$$J = (dBA - dBA_t)^2$$
$$\frac{\partial J}{\partial p_0} = 2(dBA - dBA_t)\frac{\partial (dBA)}{\partial p_0}$$

$$J = \frac{1}{2} (\overline{A_e} - \overline{A_{e,t}}) (\overline{A_e} - \overline{A_{e,t}})^T$$
$$\frac{\partial J}{\partial p_o} = \left[\overline{A_e} - \overline{A_{e,t}}\right] \frac{\partial A_e}{\partial p_o}$$

• Gradient of the objective:  $\frac{dL}{dD} = -\gamma_{0,1}^T k_1 B^1$ 

#### **Boom Adjoints: Extension to Existing Theory**

![](_page_8_Picture_1.jpeg)

• Change of independent variable vector from  $p_0$  to  $A_e$ 

![](_page_8_Figure_3.jpeg)

50

x<sup>100</sup>

150

Gradient optimization leads to numerically better, but practically worse targets

![](_page_8_Figure_5.jpeg)

#### **Boom Adjoints: Extension to Existing Theory**

![](_page_9_Picture_1.jpeg)

• Change of independent variable vector from  $p_0$  to  $A_e$ 

![](_page_9_Figure_3.jpeg)

- Smoothing is needed
  - > Cubic spline based  $A_e$  targets based on control points
  - Algorithm not only returns spline interpolation, but also the Jacobian matrices:  $\frac{\partial A_e}{\partial X_{CP}}$ ,  $\frac{\partial A_e}{\partial A_{e,CP}}$  [N > C, CP = Control Points]
  - Gradient computation extended by chain rule

$$\frac{dL}{dD} = \begin{cases} \frac{dL}{dA_e} \frac{dA_e}{dX_{CP}} & \text{if } D = X_{CP} \\ \frac{dL}{dA_e} \frac{dA_e}{dA_{e,CP}} & \text{if } D = A_{e,CP} \\ 1 \times N & N \times C \end{cases}$$

#### Sensitivities wrt flight conditions and propagation parameters

- Independent variable vector  $D: [\Delta \sigma, S, \Gamma, \theta_{v,1}, C_{v,1}, \theta_{v,2}, C_{v,2}, h, M]$
- Updated derivative of the Lagrangian

![](_page_10_Figure_4.jpeg)

Updated gradient calculation:

$$\begin{aligned} \frac{dL}{dD} &= \sum_{n=1}^{N} \gamma_{0,n}^{T} \left[ q_{n}^{T} \frac{\partial A^{n}}{\partial D} - k_{n} p_{n-1}^{T} \frac{\partial B^{n}}{\partial D} - B^{n} p_{n-1} \frac{\partial k_{n}}{\partial D} \right] \\ &+ \sum_{n=1}^{N} \gamma_{1,n}^{T} \left[ r_{n}^{T} \frac{\partial A_{2}^{n}}{\partial D} - q_{n}^{T} \frac{\partial B_{2}^{n}}{\partial D} \right] + \sum_{n=1}^{N} \beta_{n}^{T} \left[ t_{n}^{T} \frac{\partial A_{3}^{n}}{\partial D} - r_{n}^{T} \frac{\partial B_{3}^{n}}{\partial D} \right] \end{aligned}$$

Significant increase in memory requirement (~12 GB more than previous formulation for a typical case)

### **Verification of Adjoint Sensitivities**

![](_page_11_Picture_1.jpeg)

- Adjoint sensitivities verified against complex step gradients
  - ➢ Imaginary step size of 10<sup>-50</sup> used in evaluating complex gradients
  - > Good match up to 8 digits of numerical accuracy for target  $A_{e}$

| Grid Point | Adjoint Gradient  | Complex Gradient                |
|------------|-------------------|---------------------------------|
| 0          | 4.99555122854739  | $4.99555122\underline{485994}$  |
| 200        | 0.22333517023795  | $0.223335170\underline{026696}$ |
| 500        | -1.83336776546880 | $-1.83336776\underline{671720}$ |

• Sensitivities wrt flight conditions, and propagation parameters

| Variable        | Adjoint Gradient                  | Complex Gradient                              |
|-----------------|-----------------------------------|-----------------------------------------------|
| S               | -0.121609572658E-002              | -0.121609 <u>679831</u> E-002                 |
| $\Delta \sigma$ | -0.101433622238E + 004            | -0.10143 <u>4351727</u> E+004                 |
| Г               | $-0.242603369041\mathrm{E}{+005}$ | $-0.24260 \underline{7576473} E + 005$        |
| $C_{\nu_1}$     | $0.850297505015\mathrm{E}{+}002$  | $0.85029\underline{3279821}E{+}002$           |
| $C_{\nu_2}$     | $0.114275582996\mathrm{E}{+}003$  | $0.11427\underline{9749352}E{+}003$           |
| $\theta_{ u_1}$ | -0.270434382922E + 004            | $-0.27043\underline{8763849}\mathrm{E}{+004}$ |
| $\theta_{ u_2}$ | $-0.226512310051\mathrm{E}{+}005$ | $-0.2265\underline{34988755}\mathrm{E}{+005}$ |
| M               | $0.103286198407\mathrm{E}{+}002$  | $0.10328 \underline{1674303} E + 002$         |
| h               | 0.373155218390E-004               | 0.3731552 <u>85384</u> E-004                  |

#### **Results: Target A<sub>e</sub> Generation**

- 15 spline control points
- SQP optimization with Aweighted loudness (dBA) to be minimized
- 64-bit Xeon CPU with 16GB memory
- Total wall time ~ 30 minutes
- Under- and off-track target generated simultaneously
- Targets generated in the neighborhood of the baseline

![](_page_12_Figure_7.jpeg)

![](_page_12_Picture_8.jpeg)

### **Results: Target** A<sub>e</sub> generation

- Typically convergence achieved in 50-60 function evaluations
- A-weighted loudness (dBA) minimized, but perceived loudness tracked
  - Good correlation between dBA and PLdB

![](_page_13_Figure_4.jpeg)

![](_page_13_Picture_7.jpeg)

#### **Results: Atmospheric Sensitivity**

![](_page_14_Picture_1.jpeg)

- Loudness sensitivity to Mach number decreases with Mach number
- Loudness sensitivity to cruise altitude approaches zero in tropopause

![](_page_14_Figure_4.jpeg)

![](_page_15_Picture_1.jpeg)

- Loudness sensitivity to number of points used during propagation asymptotically approaches zero
- Loudness is very sensitive to step size at extremely low step sizes
  - Quickly approaches zero for higher numbers

![](_page_15_Figure_5.jpeg)

#### Discussion

![](_page_16_Picture_1.jpeg)

- Adjoint-based design optimization used to generate targets
  - Targets generated in literature were based on either non-gradient approaches or linearized boom minimization theory
  - New approach provides an efficient way to generate targets
- Adjoint-based atmospheric sensitivity analysis
  - Some sources of epistemic uncertainties considered
  - Possible extension to include aleatory uncertainties such as temperature, winds, and relative humidity profiles
  - Quantify uncertainty during sonic boom propagation
  - Robust design point where error and sensitivity are simultaneously minimized
  - Use information to understand and improve design

#### Summary

![](_page_17_Picture_1.jpeg)

- sBOOM framework extended to generate boom sensitivities with respect to equivalent areas, flight conditions, and propagation parameters
- Target equivalent areas generated using gradient-based optimization at multiple azimuthal angles
- Sensitivity of boom metrics to flight conditions and propagation parameters obtained, plotted and observations made

![](_page_18_Picture_0.jpeg)

## QUESTIONS?

Acknowledgments:

- NASA High Speed project
- Jim Fenbert for setting up the ModelCenter model for gradient-based optimization to generate target equivalent areas
- Karl Geiselhart (ModelCenter)
- Irian Ordaz (off-track analysis)
- Mathias Wintzer for manuscript review and general discussions
- Lori Ozoroski for manuscript review and support