Uncertainty Quantification and Certification Prediction of Low-Boom Supersonic Aircraft Configurations

Thomas West Missouri University of Science and Technology

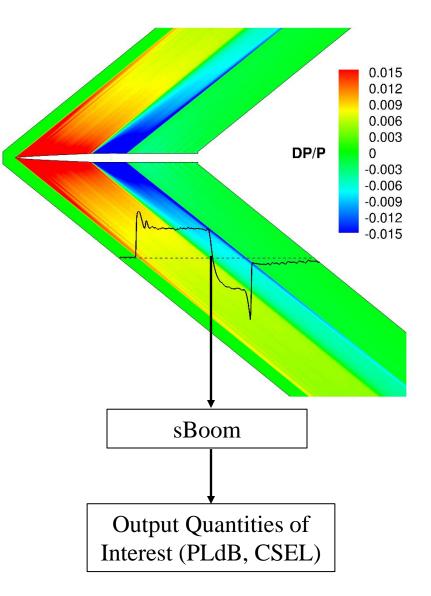
> Bryan Reuter University of Texas at Austin

Eric Walker, Bil Kleb, and Michael Park NASA Langley Research Center

AIAA Aviation and Aeronautics Forum and Exposition Atlanta, Georgia June 16th, 2014

06/16/2014

Outline


- Objectives and Motivation
- Computational Fluid Dynamics Approach for Boom Predictions
- Types of Uncertainty in Numerical Modeling
- Uncertainty Quantification and Sensitivity Analysis using Polynomial Chaos Expansions
- Certification Prediction Approach
- Demonstration on Sonic-Boom Configurations
- Conclusions

Objectives

- Develop a framework for efficient, accurate, scalable uncertainty quantification and certification prediction of sonic boom configuration models.
- Implement a nonintrusive, surrogate modeling approach based on polynomial chaos theory for efficient application to high-fidelity, multiphysics modeling.
- Determine the global nonlinear sensitivity of sonic boom measures to uncertain inputs using an approach based on the polynomial chaos expansion.
- Demonstrate the framework on three sonic boom configurations:
 - SEEB-ALR Body of Revolution
 - NASA 69° Delta Wing
 - Lockheed Martin (LM) 1021-01 Low Boom Configuration

Complex Physics Models for Boom Prediction

- High fidelity approach for sonic boom propagation
 - Resolve near-field delta pressure with CFD
 - Propagate near-field signature to the ground with sBoom
 - Measure the uncertainty in quantities of interest (PLdB, CSEL)
- FUN3D
 - <u>Fully Unstructured Navier-Stokes</u>
 <u>3D</u> flow solver
- Both Euler and fully turbulent cases were investigated
 - Fully turbulent cases used one equation Spalart-Allmaras model

Types of Uncertainty in Numerical Modeling

- Inherent (Aleatory) uncertainty
 - Inherent variation of a physical system (irreducible)
 - Represented mathematically with probability density function (PDF)
 - Examples Freestream properties, manufacturing tolerances, etc.

- Epistemic uncertainty
 - Arises due to ignorance, lack of knowledge, or incomplete information (reducible)
 - Can be represented using intervals
 - Examples Tunable modeling parameters, uncharacterized flight path conditions, turbulence model closure coefficients, etc.

Uncertainty Quantification and Sensitivity Analysis

- Uncertainty Quantification
 - Surrogate-based approach implemented for computational efficiency.
 - Surrogate developed using Point-Collocation Nonintrusive Polynomial Chaos.
 - Uncertainty propagated through the surrogate model using **second-order probability** for treatment of mixed (aleatory and epistemic) uncertainty.
 - Surrogate accuracy verified using test points.
- Sensitivity Analysis
 - Sensitivities obtained from **Sobol Index** approach.
 - Sobol indices are **based on the polynomial chaos expansion (PCE)** (no further CFD model evaluation).
 - Total Sobol indices are the **global nonlinear sensitivities** of the model to each uncertain parameter.

Basics of Polynomial Chaos (PC)

Spectral Representation of a Random Function or Response:

$$\alpha^*(\vec{x}, t, \vec{\xi}) \approx \sum_{j=0}^P \alpha_j(\vec{x}, t) \Psi_j(\vec{\xi})$$

Deterministic component Random component

 $\vec{\xi} = (\xi_1, ..., \xi_n) \Longrightarrow$ $\Psi_i(\vec{\xi}) \Longrightarrow$

 $N_t = P + 1$

n-dimensional independent random variable vector

random basis functions (orthogonal polynomials i.e., Legendre polynomial if $\vec{\xi}$ is uniform and Hermite polynomials if $\vec{\xi}$ is normal) total number of output modes

$$N_t = P + 1 = \frac{(n+p)!}{n!p!}$$
 p : polynomial order of total expansion

Need to determine the expansion coefficients!

06/16/2014

7

Point-Collocation Non-Intrusive PC

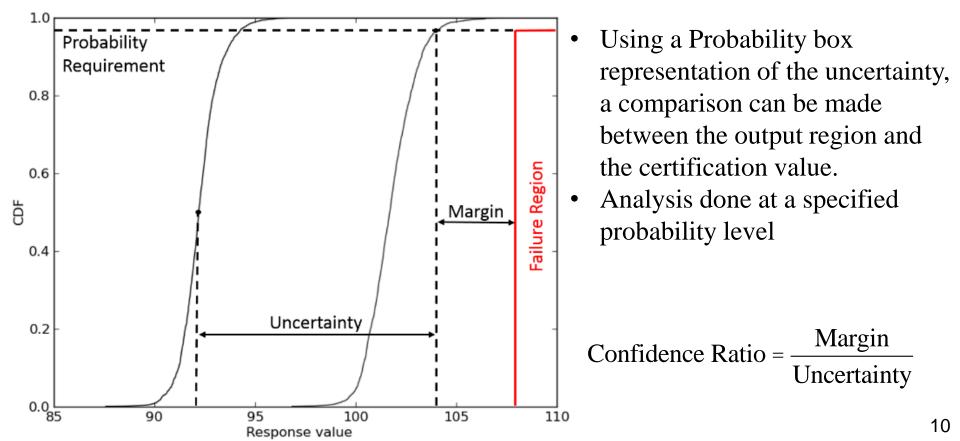
- One approach for determining the coefficients of the PC expansion is to use a point-collocation approach.
- For a given PC of order p and n random dimensions, choose N_s sample points to evaluate the deterministic model.
- Solve a linear system for the modes.

$$\begin{pmatrix} \Psi_{0}(\xi_{0}) & \Psi_{1}(\xi_{0}) & \cdots & \Psi_{P}(\xi_{0}) \\ \Psi_{0}(\xi_{1}) & \Psi_{1}(\xi_{1}) & \cdots & \Psi_{P}(\xi_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ \Psi_{0}(\xi_{N_{s}}) & \Psi_{1}(\xi_{N_{s}}) & \cdots & \Psi_{P}(\xi_{N_{s}}) \end{pmatrix} \begin{vmatrix} \alpha_{0} \\ \alpha_{1} \\ \vdots \\ \alpha_{P} \end{vmatrix} = \begin{pmatrix} \alpha^{*}(x,\xi_{0}) \\ \alpha^{*}(x,\xi_{1}) \\ \vdots \\ \alpha^{*}(x,\xi_{N_{s}}) \end{pmatrix} \\ \begin{pmatrix} N_{s} & x & N_{t} \end{pmatrix}$$

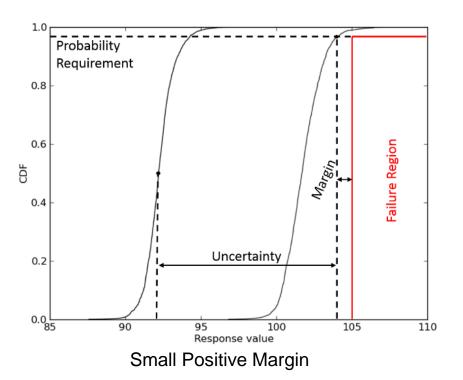
• For an overdetermined system $(N_S > N_t)$, use a Least Squares approach to obtain the modes.

Global Non-Linear Sensitivity Analysis with Sobol Indices

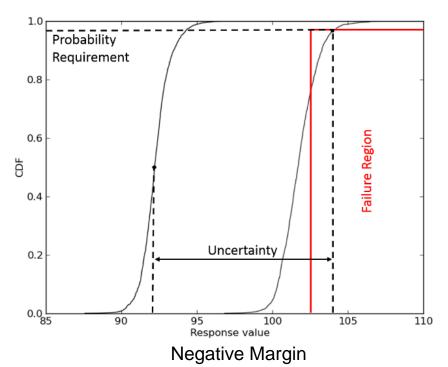
• Objective: Rank the relative importance of each input uncertain variable to the overall output uncertainty using non-linear global sensitivity analysis.


 $S_{i_1 \cdots i_s} = \frac{D_{i_1, \dots, i_s}}{D} \xrightarrow{\text{Partial variance (calculated from PCE)}} \text{Total variance (calculated from PCE)}$

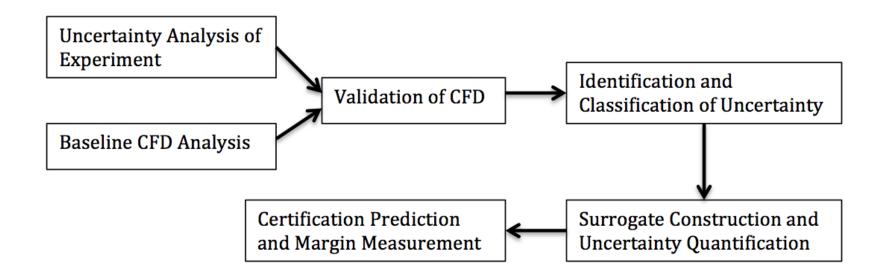
$$D_{i_1,\dots,i_s} = \sum_{\beta \in \{i_1,\dots,i_s\}} \alpha_\beta^2(t,\vec{x}) \left\langle \Psi_\beta^2(\vec{\xi}) \right\rangle, \qquad 1 \le i_1 < \dots < i_s \le n$$


$$D = \sum_{j=1}^{P} \alpha_j^2(t, \vec{x}) \left\langle \Psi_j^2(\vec{\xi}) \right\rangle$$

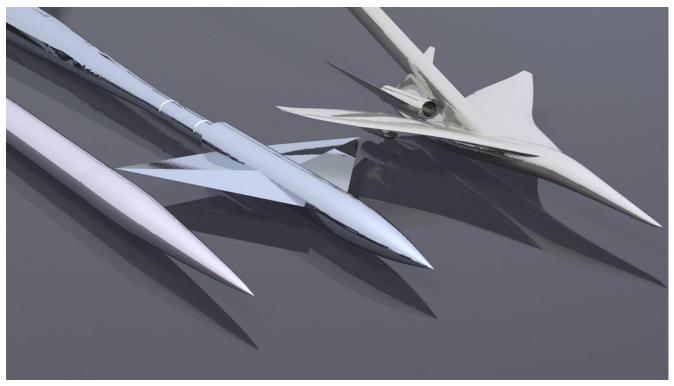
Certification Prediction Approach


- Using the UQ results, a method known as the quantification of margins and uncertainties (QMU) can be used to measure the confidence in a design.
- QMU compares the uncertainty in both the design and some threshold with a margin between the two using a confidence ratio.

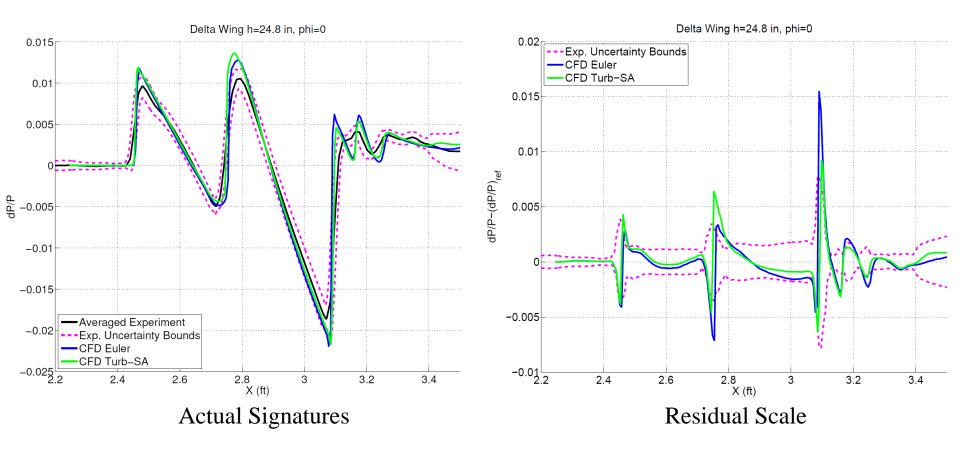
Certification Prediction Approach



- Margin may be small with respect to the uncertainty
- Indication of weak reliability that the design may pass certification.


- Failure region may cross into the output probability region.
- Certification prediction unlikely.

UQ and Certification Prediction Process Summary



Low-Boom Configurations

- SEEB-ALR
 - o As-built and As-designed
- NASA 69 deg. Delta Wing
- Lockheed Martin 1021-01 Configuration

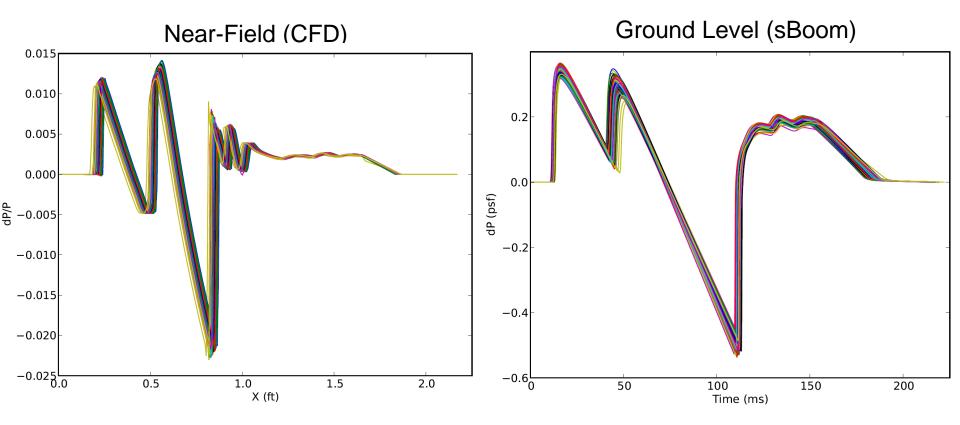
69° Delta Wing: Comparison with Experiment

Uncertain Input Parameters

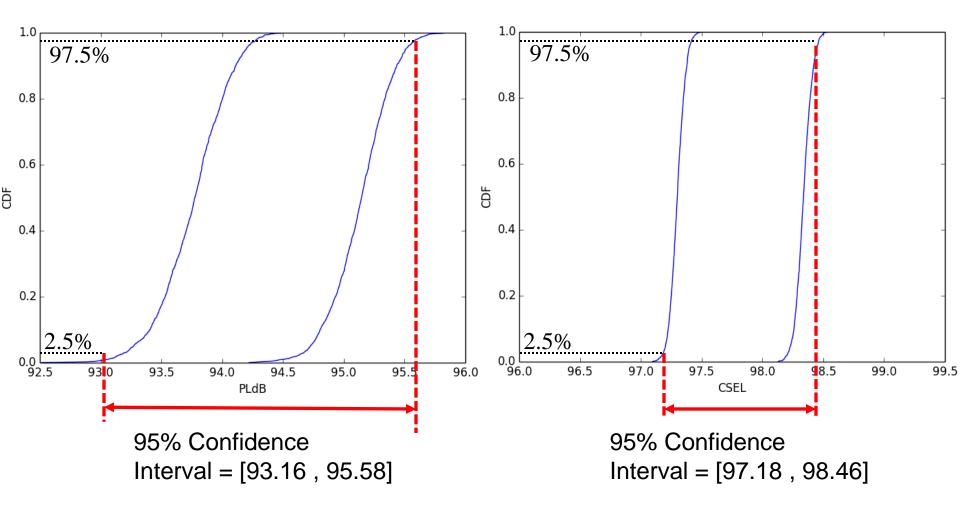
CFD Aleatory Inputs

Input	Distribution	Mean	Std. Dev.
Angle of Attack	Gaussian	0.0	0.1
Mach Number	Gaussian	1.6/1.7	0.0016

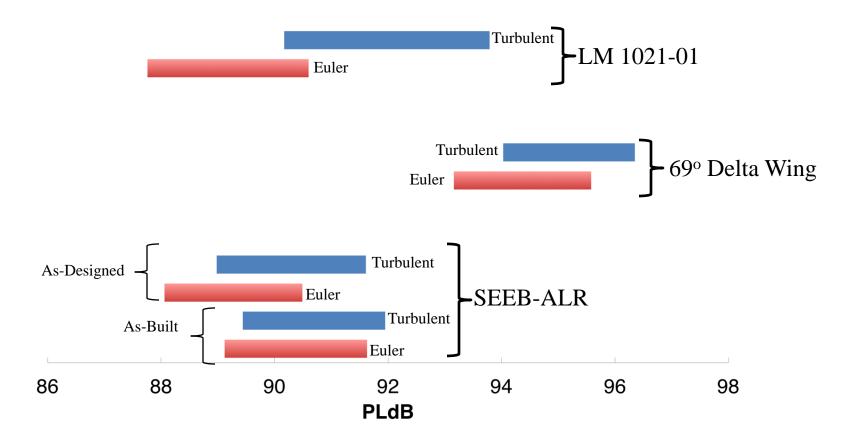
sBoom Aleatory Inputs


		•	
Input	Distribution	Mean	Std. Dev.
Temperature Profile (%)	Gaussian	1.0	0.01
Humidity Profile $(\%)$	Gaussian	1.0	0.01
Climb Angle (Deg.)	Gaussian	0.0	0.1
Azimuth (Deg.)	Gaussian	0.0	0.1
Turn Rate $(Deg./s)$	Gaussian	0.0	0.05
Climb Rate (Deg./s)	Gaussian	0.0	0.05

sBoom Epistemic Inputs


Input	Min.	Max.
Initial Step Size	0.007	0.03
Reflection Factor	1.8	2.0
Ground Elevation (ft)	0.0	5000.0
Signature Propagation Points	20000	60000

- Uncertainty exists in both the nearfield CFD model and sBoom.
- Uncertain parameter information based on author discussion and expert opinion.
- These are the final values. Intermediate results were used to improve the results.


69° Delta Wing Euler: 182 Deterministic Model Samples (2nd Order PCE)

69° Delta Wing Euler: Probability-Box Output Representation

Sonic Boom Configuration Summary: PLdB 95% Confidence Intervals

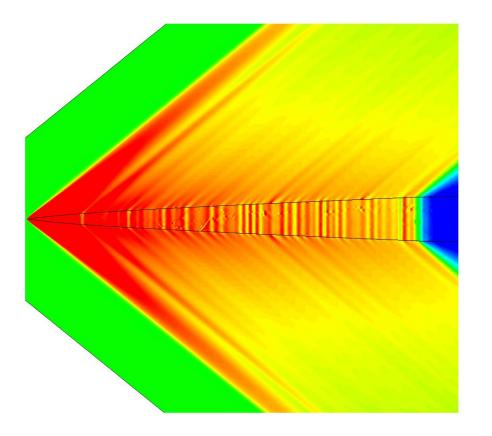
Sonic Boom Configuration Summary: Global Nonlinear Sensitivities via Sobol Indices

Variable Contribution to PLdB greater than 10%

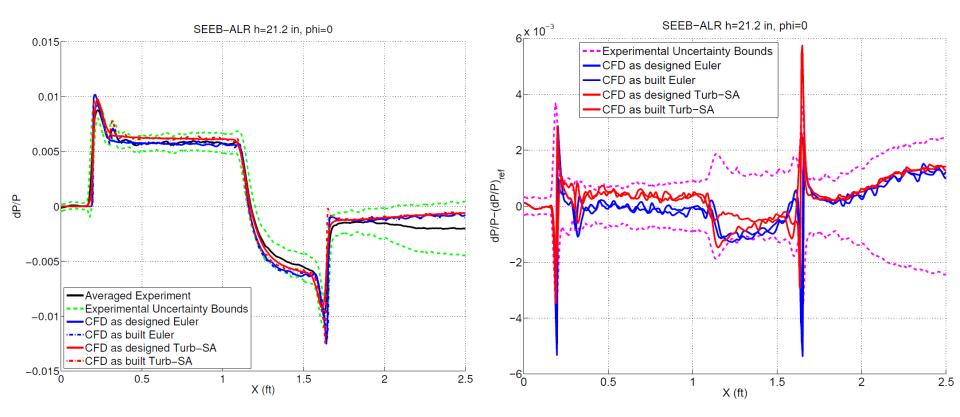
		SEEB-Al	_R		
Uncertain Parameter	Euler as-Built a	Euler as-Designe		urbulent as-Built	Turbulent as-Designed
Reflection Factor	46.4%	44.8%		45.9%	44.2%
Humidity Profile	38.3%	35.7%		41.6%	36.1%
69° Delta Wing					
Unce	ertain Parame	eter Eule	er	Turbulent	
Re	flection Facto	or 50.9	%	52.0%	
H	umidity Profile	e 37.1	%	38.0%	
		LM 1021-	01		
Unce	ertain Parame	eter Eule	er	Turbulent	
Re	flection Facto	or 33.8	%	21.9%	Angle of Attack becomes import due to LM 1021-01
H	umidity Profile	e 22.7	%	17.9%	design features.
A	ngle of Attack	39.0	%	55.1% <	

- For CSEL, humidity profile contribution drops below 10%.
- Reflection factor dominates for SEEB-ALR and Delta Wing.
- Angle of attack still important for LM 1021-01.

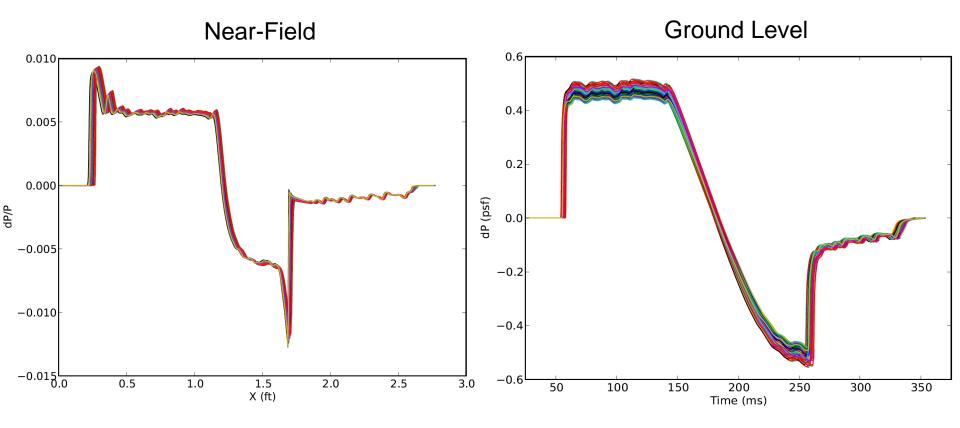
06/16/2014


Final Remarks

- Developed an efficient, accurate, and scalable framework for uncertainty quantification and certification prediction of low-boom configurations.
- Implemented a nonintrusive, surrogate modeling approach based on polynomial chaos theory for efficient application to high-fidelity multiphysics modeling.
- Determined the global nonlinear sensitivity of low-boom measures to uncertain inputs using an approach based on the polynomial chaos expansion.
- Demonstrated the framework on three sonic-boom configurations:
 - SEEB-ALR Body of Revolution (as-built and as-designed)
 - $\circ~$ NASA 69° Delta Wing
 - Lockheed Martin (LM) 1021-01 Low Boom Configuration


Backup

SEEB-ALR as-Build vs. as-Designed

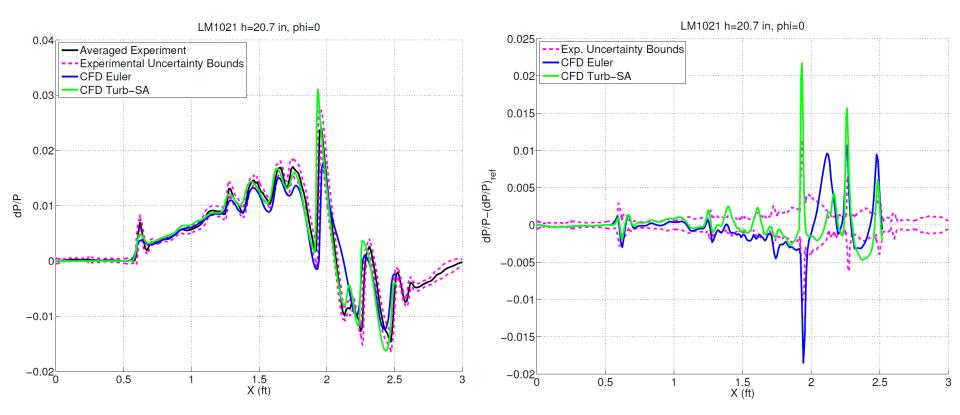


- Noticeable surface imperfections of the as-build SEEB-ALR model.
- CFD model detects these features and they are propagated to the ground level.

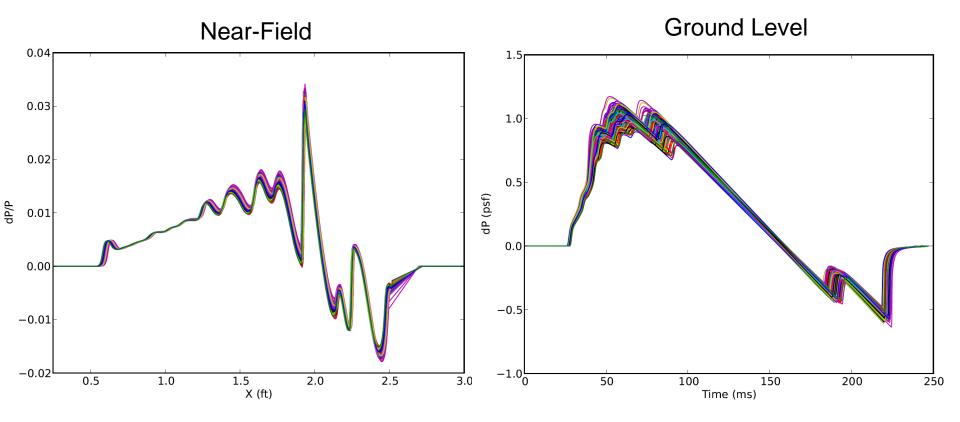
SEEB-ALR: Comparison with Experiment

SEEB-ALR Euler as-built: 182 Deterministic Model Samples (2nd Order PCE)

SEEB-ALR Euler as-built : Global Nonlinear Sensitivities via Sobol Indices


Uncertain Parameter	Euler	Euler	Turbulent	Turbulent	=
	as-Built	as-Designed	as-Built	as-Designed	
Angle of Attack	4.7%	9.6%	2.4%	6.7%	
Initial Step Size	1.6%	1.1%	1.7%	1.8% L	argest Contributors
Reflection Factor	46.4%	44.8%	45.9%	44.2%	
Humidity Profile	38.3%	35.7%	41.6%	36.1% -	
Ground Elevation	7.9%	7.7%	6.8%	9.7%	
All Others	$<\!1\%$	$<\!1\%$	$<\!1\%$	$<\!1\%$	_

Contribution to PLdB


Contribution to CSEL

Uncertain Parameter	r Euler	Euler	Turbulent	Turbulent	
	as-Built	as-Designed	as-Built	as-Designed	
Angle of Attack	3.6%	6.2%	4.5%	4.6% La	rgest Contributor
Reflection Factor	88.2%	84.1%	86.5%	86.0%	
Temperature Profile	2.2%	2.4%	2.4%	2.4%	
Humidity Profile	1.7%	1.5%	1.7%	1.7%	
Ground Elevation	4.1%	5.5%	4.6%	5.2%	
All Others	< 1%	$<\!1\%$	$<\!1\%$	$<\!1\%$	

LM 1021-01 Euler: Comparison with Experiment

LM 1021-01 Euler: 182 Deterministic Model Samples (2nd Order PCE)

Low-Boom Configurations Summary: PLdB and CSEL 95% Confidence Intervals

SEEB-ALR

Configuration	\mathbf{PLdB}	CSEL
Euler as-Built	[89.12, 91.63]	[94.64, 96.05]
Euler as-Designed	[88.06, 90.49]	[94.32, 95.80]
Turbulent as-Built	[89.44, 91.95]	[94.78, 96.22]
Turbulent as-Designed	[88.98, 91.61]	[94.75, 96.20]

69° Delta Wing

Configuration	PLdB	CSEL
Euler	[93.16, 95.58]	[97.18, 98.46]
Turbulent	[94.03, 96.35]	[97.63, 98.85]

LM 1021-01

Configuration	PLdB	CSEL
Euler	[87.76, 90.60]	[94.43, 96.85]
Turbulent	[90.17, 93.79]	[96.06, 98.76]

Sonic Boom Configuration Summary: Global Nonlinear Sensitivities via Sobol Indices

Contribution	to PLdE	3	
Uncertain Parameter	Euler	Turbulent	
Initial Step Size	1.4%	1.0%	
Reflection Factor	50.9%	52.0%	
Temperature Profile	1.3%	1.8%	Largest Contributors
Humidity Profile	37.1%	38.0%	
Ground Elevation	7.9%	6.3%	
All Others	$<\!1\%$	<1%	

Contribution to CSEL

Uncertain Parameter	Euler	Turbulent	_
Reflection Factor	93.1%	94.4%	
Temperature Profile	2.1%	2.5%	Largest Contributor
Humidity Profile	1.1%	1.5%	
Ground Elevation	1.9%	1.4%	
All Others	$<\!1\%$	$<\!1\%$	

Sonic Boom Configuration Summary: Global Nonlinear Sensitivities via Sobol Indices

Variable Contribution to CSEL greater than 10%

SEEB-ALR						
Uncertain Euler Euler Turbulent Turbulent						
Parameter	as-Built	as-Designed	as-Built	as-Designed		
Reflection Factor	88.2%	84.1%	86.5%	86.0%		

69° Delta Wing

Uncertain Parameter	Euler	Turbulent
Reflection Factor	93.1%	94.4%

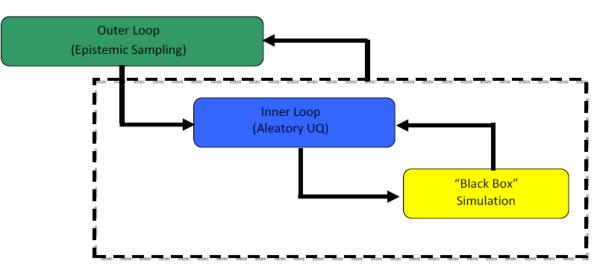
LM 1021-01

Uncertain Parameter	Euler	Turbulent	Angle of Attack becomes
Reflection Factor	33.8%	21.9%	import due to LM 1021-01 design features.
Angle of Attack	39.0%	55.1% 💶	

Basics of PC

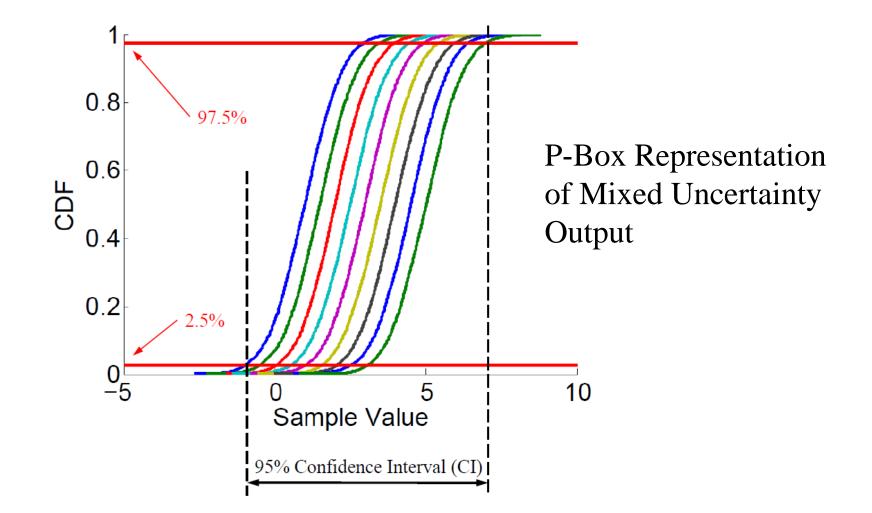
• The objective of the PC based methods is to calculate the coefficients in the stochastic expansion:

$$\alpha^*(\vec{x}, t, \vec{\xi}) \approx \sum_{j=0}^P \alpha_j(\vec{x}, t) \Psi_j(\vec{\xi})$$

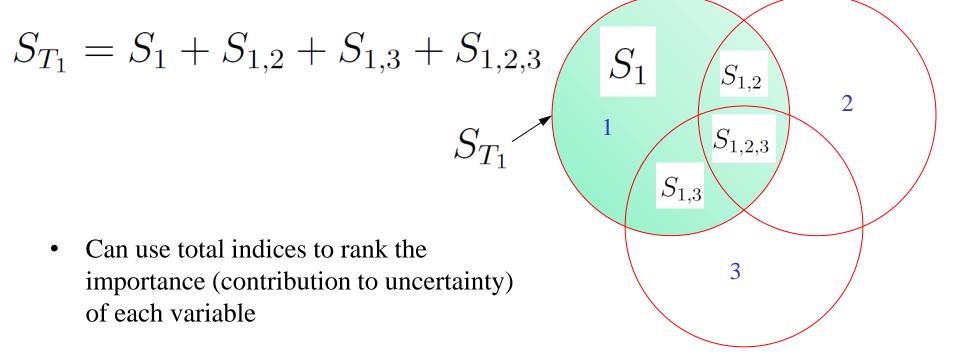

• Various statistics can be obtained with the use of coefficients and the basis functions in the expansion

$$E_{PC}\left[\alpha^*(\vec{x}, t, \vec{\xi})\right] = \alpha_0(\vec{x}, t)$$
$$Var_{PC}\left[\alpha^*(\vec{x}, t, \vec{\xi})\right] = \sum_{j=1}^{P} \left[\alpha_j^2(\vec{x}, t) < \Psi_j^2 > \right]$$

- Two main approaches to calculate the coefficients
 - Intrusive PC
 - Non-Intrusive PC (NIPC)


Analysis Under Mixed Uncertainty

• Second Order Probability Approach


- This analysis type can be computationally expensive when using traditional sampling techniques such as Monte Carlo.
- Epistemic loop can be analyzed using sampling or optimization.
- The approach in this study will be to replace the "Black Box" model with the NIPC response surface, which is a polynomial.

An Approach to Calculate 95% CI for Mixed UQ

Global Sensitivity Analysis with Sobol Indices (Cont.)

- Total indices
 - Summation of all the partial indices that include the particular parameter, e.g., n=3, i=1 (first variable):

