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Introduction

Supersonic Civilian Aircraft

Altitude Atmospheric

Propagation

Aftosmis and Nemec, AIAA 2014-0558 Ground Slgnal

o No civilian
supersonic aircraft
since retirement of
Concorde in 2003

o Renewed interest in
sonic boom
minimization over
last decade

o CFD can be a useful
tool in the design
process

o Accuracy of CFD
prediction must be
assessed



Introduction

15t AIAA Sonic Boom Prediction Workshop

o Workshop is designed to assess the state-
of-the-art in CFD simulation capabilities
for sonic boom prediction

o Three models of increasing geometric
complexity are included in the study

 SEEB-ALR

* 69 Degree Delta-Wing Body

* Lockheed Martin 1021 model
o LAVA results using structured and

unstructured grids have been submitted

to the workshop

Lockheed Martin 1021 model 4



LAVA Framework

Launch Ascent and Vehicle Aerodynamics Framework™ '
o Computational Fluid Dynamics (CFD) Solver

 (Cartesian, Curvilinear, and Unstructured Grid Types

 Overset Grid and Immersed Boundary Methods

* Reynolds Averaged Navier-Stokes and Detached Eddy
Simulation Capabilities

m Convective Flux Discretization | Turbulence Model

Structured Overset Modified Roe and Central Spalart-Allmaras  Alt. Line Jacobi
Unstructured Polyhedral AUSMPW+ Spalart-Allmaras  GMRES

Development Team

* e
Kiris et. al.
Cetin Jeffrey Michael Emre Christoph Shayan set.a 5
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downstream of shoulder (ALR)

o Model Length: 17.67 inches

o Computation Model: 68.3 inches

o Inviscid Analysis: Mach

1.6

height (h)




Seeb-ALR

Computational Grid
o 4 zones and 21.7 million grid points

o Near-body marched normal to surface then turned to Mach-angle
aligned mesh
o Local bow shock capturing grid at near blunt nose
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Seeb-ALR

Computational Requirements and Residual Convergence

Modified Roe Westmere 48 1 hr. 30 min. 72.0

Central Westmere 48 1 hr. 18 min. 62.4
1o _Convergence History 10! _Convergence History
: — L2 Flow : : — L2 Flow
10° | — 12 Dql] 10° — L2 Dq |/
107t 10
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e 10™ e 10
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Seeb-ALR @/ .

Flow Field Visualization

o Bow shock

dP/Pref

0008 forms at blunt
E 0004 nose of the
o000 / model
-0.002
i::;ggg o Secont_jary
2010 shock is
generated
from small

slope change
near the nose
o Rarefaction
wave
develops
downstream
of the
shoulder o
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Results and Comparison: h = 21.2 inches ¢ = 0 degrees
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Seeb-ALR
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Aspect Ratio Sensitivity Anc_ﬂysis: h =42 inches p=0°

AR = ds/dx

ds

dx
>
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o Sensitivity to grid

Aspect Ratio (AR) at
the outer-boundary
No sensitivity
observed in bow
shock

Secondary peak and
pre-recovery peak
pressures show some
sensitivity to AR
Change in peak
decreases with
decreasing AR

AR = 20 submitted to
the workshop
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Seeb-ALR

Viscous Sensitivity Analysis: h = 21.2 inches ¢ = 0°
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o A delta off-set in pressure signature is observed between the Euler
and RANS results at both extraction locations

o Boundary layer appears to make the body effectively thicker
o The same offset was observed using both SA and SST models 12



69 Degree Delta Wing Body

Geometric Model o 69 swept Delta Wing bisecting a cylindrical
fuselage attached to an axisymmetric sting
o Mach = 1.7 Reynolds Number = 4.24 M (per ft)

e
h—h—

Model Length = 6.9 inches
Total Length = 30.4 inches
Semi-span = 2.7 inches




69 Degree Delta Wing Body

omputational Grid: Structured

o 8 zones and 21.3 million points

o Viscous Wall y+=2

o Clustering on fuselage to » —
capture wing LE, TE, and Tip - - @ Wﬁ

o Mach-angle aligned grid - = =
marched from fuselage @  _# —

o Cores: 48 Westmere — _#

o Walltime: 109 min. ¢ ’ e

e

o Core hrs: 87.2 — i e
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69 Degree Delta Wing Body

Computational Grid: Unstructured

o 12.1 million polyhedral cells

Core mesh utilizes isotropic cells

Anisotropic prismatic layers grown from surface

Mach-angle alighed mesh extruded from outer core boundary
Cores: 320 Sandy Bridge; Walltime: 25 min.; CPU hrs: 133.3
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69 Degree Delta Wing Body @/

Flow Field Visualization

o Amplitude of
pressure waves
decay with radial
distance (energy)

o Delta wing disturbs
the symmetric
signal generated
by the fuselage

o Signal will
eventually regain
symmetry with
increased radial
distance
(equivalent area)16




69 Degree Delta Wing Body

Results and Comparison: h = 24.8 inches
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69 Degree Delta Wing Body

Circumferential Spacing Sensitivity Analysis: h = 24.8 inches
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Lockheed Martin 1021 Nash

Geometric Model

Lockheed Martin Phase | low sonic boom model

Mach = 1.6, Reynolds number 4.36 M (per ft.), a = 2.1°

Designed for low boom on-track and reduced pressure up to 20°
Model length 22.4 inches representing 0.8 % scale (1:125)
Swept blade strut designed to minimize interference

Trip disks added near wing leading edge to force transition

O O O O O O
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Lockheed Martin 10
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Lockheed Martin 1021

Computational Grid: Unstructured

o 65.5 million
polyhedral cells

o Surface cell size
specification used
on symmetry plane
for improved on
track accuracy

o Fine surface mesh
resolution with
clustering near
sharp geometric
features

o Cores: 2000

Walltime: 45 min.

o Core hours: 1500

S ERNEINBRNNN .
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Lockheed Martin 1021 @/

Flow Field Visualization

o Complex
wave pattern
generated by
the model
Magnitude of
peaks decay
radially
Waves
coalesce
below the
vehicle to
help reduce
the sonic
boom




Lockheed Martin 1021

Resul
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ts and Comparison: On-Track
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o At h =20.8 the structured and unstructured solutions match well until X =43.5
o At h =70 stronger peaks are observed in the unstructured results (AUSMPW+)

o Both approaches match the experimental data well

23



Lockheed Martin 1021

Results and Comparison: Off-Track
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o CFD was solved at a=2.1° while experimental data was only available at near-by a

o At =20° structured and unstructured solutions match well, discrepancy with
experiment from 35 < X < 40 are due to differences in a

o Sharper peaks are generated using the unstructured grid at p=48° 24



Lockheed Martin 1021

Viscous Sensitivity Analysis: On-Track
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o Laminar flow computations performed to assess the sensitivity to turbulent flow
assumption

o Minor differences observed in pressure prediction on the order of structured and
unstructured grid differences 25



Lockheed Martin 1021 @

Viscous Sensitivity Analysis o Larger differences
observed in surface

oil flow
> o Shock wave
Turbulent === — generated by the
— blade causes
laminar flow
separation near the
leading edge of the
top wing surface
= o Strength of

————— separation
- generated from
under-wing nacelle
is larger using
Laminar flow
Bottom Surface h assumption

Laminar

Top Surface

Turbulent

Laminar

26



Lockheed Martin 1021

0.03
Geometric Sensitivity Analysis ; i '[¢ )
0.02} ad
o Two additional configurations performed to
assess geometric sensitivity £ oo
o Almost no difference excluding the blade 2 oo

o Largest overpressure attributed to the under- ,
wing nacelle 0.011 odel
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Lockheed Martin 1021 @

Geometric Sensitivity Analysis

Model - Nacelle Model Model - Nacelle Model

X=17.7 X=18.7

Model - Nacelle Model Model - Nacelle

X=19.7 X=21.7
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Summary @ .

o LAVA framework has been successfully applied to the
Sonic Boom Prediction workshop test cases.

o Both structured and unstructured grid methodologies
have been investigated and similar accuracy
demonstrated

o Computational resources are approximately 2 — 5.5 times
more using the unstructured approach

o The AUSMPW+ and Modified Roe fluxes performed better
than central differencing (fewer spurious oscillations)

o Good comparison achieved with experimental data

29
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