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Boom1 VS2 model in Glenn 8x6 SWT 



N+2 NRA Studies 
•  3-year, 2-phase study contracts with Boeing and Lockheed-Martin 

•  Design for N+2 (2nd-generation) supersonic transport to meet goals: 
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Environmental Goals 
Sonic Boom 85 PLdB 

Airport Noise (cumulative below stage 3) 10–20 EPNdB 

Cruise Emissions < 10 EIN Ox 

Performance Goals 
Cruise Speed Mach 1.6–1.8 low boom flight 

Range 4000 nm 

Passengers 35–70 

Fuel Efficiency (px-nm per lb of fuel) 3.0 

•  Phase I: Design for low boom and aerodynamic efficiency 

•  Phase II: Nacelle/airframe integration, inlet performance and effects on boom 



Boeing QEVC 

•  Quiet Experimental Validation Concept designed in 2009 
•  Design flight conditions:  

–  Mach 1.8 
–  CL = 0.104 
–  α = 3.28° 

•  35 to 70 passengers 
•  Range 4000 nm 
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Wind Tunnel Tests 
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•  Ames 9x7 and Glenn 8x6 Supersonic 
Wind Tunnels 

•  14” RF1 pressure rail and  
2” flat-top pressure rail 

•  Mostly Mach 1.6 and 1.8 
•  Performance model shown here, plus 

AS2 and Boom models (next page) 

14-in. RF1 Pressure Rail 

Ames 9x7-Ft SWT Glenn 8x6-Ft SWT 

43-in. Performance Model 

14-in. RF1 
Pressure Rail 

Linear 
Actuator 



AS2 and Boom Models and Struts 

AS2 body of revolution 
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Boom1 model, VS2 strut 

4 blade strut options for Boom models 

Short strut, to minimize lateral 
dynamics 

Longer, if dynamics not a problem. 
Greater separation of model & 
support shocks. 

Longer yet, to have clean aft end of 
model 

Sting mount, to compare to blade strut 
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Plot file: fA20.ps     Sun May 25 14:39:58 2014 

Figure 20.  Differencing technique to isolate model pressure signature with rail 
9x7 Parametric Test, Boom1 VS2 Model, M = 1.60, PT = 2292 psf, HumidAvg = 314 ppm 
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•  Pressure rail on wall has 420 
orifices to capture entire model 
signature at once 

•  Reference run taken with model 
shocks off rail (or at least 
downstream of where model 
shocks will be) 

•  Data run taken with model shocks 
on rail 

•  Model signature is difference 
between reference and data runs 

•  X or Z sweeps conducted to 
acquire signatures in different 
regions of tunnel flow 

•  Sweeps allow for averaging out 
tunnel spatial flow variations 

•  Temporal averaging also done with 
appropriate sampling durations 
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Model signature 

Pressure Rail Test Technique 
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Spatial Averaging of Model Signatures 
•  Example: 26 signatures acquired with ram extension from 8” to 24” (0.63” spacing) 
•  Distortions due to tunnel flow spatial variations and model vibrations are evident in 

individual signatures, but averaging reduces these effects 
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Unaligned 

X sweep moving 
forward (ΔP/P 
curves offset) 

Signatures 
aligned in X 

Aligned 

AS2 model 
X sweep in 
9x7 WT,  
Mach 1.6 

AS2 signature 



Shock Wave Imaging 

•  Facility-generated shock waves often as strong or stronger than 
model shocks being measured 

•  Reference runs and spatial averaging minimize effects of facility 
shocks but cannot eliminate these effects 
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9x7 shadowgraph 
Empty tunnel 
Mach 1.6 

9x7 RBOS* image 
Mach 1.6 

* RBOS: Retroreflective 
Background-Oriented Schlieren 

RF1 rail (1” thick at base) 

Boom1 VS2 model (rolled 90°) 



Plot file: fA24ppt.ps     Mon Jun  9 12:40:43 2014 
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Repeatability of Experimental Data 

•  AS2 and Boom1 VS2 repeat runs show excellent repeatability 
•  X and Z sweeps give similar results 
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AS2, X , Z, & Z sweeps 
α = 0°, h/L = 3.75 (30”) 
14” forward rail 

Boom1 VS2, X sweeps 
α = 3.4°, h/L = 3.81 (60”) 
14” aft rail 

9x7 Wind Tunnel  
Mach 1.6 
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Effect of Model Height, Boom1 VS2 

•  Increased height causes rounding of signatures due to aging 
•  Overall pressure levels decrease with height 
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All X sweeps, α = 3.4° 
14” rail: forward for h = 30” 

 aft for h = 60” 

Mach 1.8 

Mach 1.6 

h/L = 1.91 (30”) 
h/L = 3.81 (60”) 

9x7 Wind Tunnel 

h/L = 1.91 (30”) 
h/L = 3.81 (60”) 
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Mounting Strut Effects, Boom Models 
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Boom1 VS2 

Boom3 VS3 

Boom3 VS4 

Mach 1.8 

Mach 1.6 

α = 3.40° 
α = 3.54° 
α = 3.43° 

α = 3.39° 
α = 3.52° 
α = 3.15° 

•  VS2,3,4 struts, Mach 1.6 & 1.8, 14” aft rail, height = 60” 
•  VS2 & VS3 more similar to each other than to VS4, but VS3 & 4 pressures more 

similar at Mach 1.6 
•  Greater differences between VS3 & 4 exist at Mach 1.8, though angle-of-attack 

differences could account for part of this 
•  VS4 blade shock overtakes aft end of model signature at both Mach numbers 

9x7 Wind Tunnel  
h/L = 3.81 (60”) 



Computational Methods 

Results from 3 codes presented here: 

•  Cart3D 
–  Fast, inviscid, unstructured-mesh analysis package for conceptual and 

preliminary aerodynamic design  
–  Used with Adjoint Error Optimization (AERO) module  

•  USM3D 
–  Tetrahedral cell-centered, finite volume Euler and Navier-Stokes (N-S) method  
–  Run both inviscid and viscous (laminar, and turbulent with Spalart-Allmaras 

turbulence model) for this study 

•  OVERFLOW 
–  OVERset structured grid FLOW solver used by Boeing for present results 
–  Inviscid and turbulent with Spalart-Allmaras turbulence model 
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AS2 Grid and Pressure Contours 

•  Cart3D adjoint-adapted grid and isobars in symmetry plane  
•  Sensor lines shown at heights of 30” and 60” for extracting pressure 

signatures 
•  Mach 1.6, α = 0° 
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AS2 Experiment / CFD Comparisons 

•  Flat region aft of nose shock 
predicted well 

•  All CFD codes overpredict nose 
shock relative to experiment 

–  Shock in WT data may be rounded 
due to flow irregularities 

–  Viscous solutions not necessarily 
better than inviscid 

•  All CFD codes predict lower 
pressures in main expansion 
than experiment 

–  Similar differences found for other 
bodies of revolution tested (not 
shown here) 

–  Error was thought to be related to 
impingement of rail LE shock on aft 
part of model, but that was found to 
not be a factor 
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9x7 Wind Tunnel  
Mach 1.6 
h/L = 3.75 (30”), α = 0° 
14” RF1 rail 

Experiment 
Cart3D inviscid 
USM3D inviscid 

Experiment 
USM3D viscous (SA) 

OVERFLOW viscous (SA) 

(SA: Spalart-Allmaras turbulence model) 
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Boom1 VS2 Pressure Contours 

•  Surface pressure contours computed by USM3D with laminar 
boundary layers 

•  Mach 1.6, α = 3.4° 
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•  Symmetry plane 
pressure contours 
computed by Cart3D 

•  Mach 1.6, α = 3.4° 
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Boom1 VS2 Experiment / CFD Comparisons 
•  Inviscid shock peaks are overpredicted relative to viscous 
•  USM3D laminar prediction matches exp. data better than turbulent 

prediction from OVERFLOW 
•  Effects of model height well-captured by predictions 
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9x7 Wind Tunnel  
Mach 1.6 
α = 3.4° 

Experiment 
Cart3D inviscid 

OVERFLOW inviscid 

h/L = 1.91 (30”), 14” RF1 forward rail h/L = 3.81 (60”), 14” RF1 aft rail 

Experiment 
USM3D viscous (laminar) 
OVERFLOW viscous (SA) 

(SA: Spalart-Allmaras turbulence model) 

Experiment 
Cart3D inviscid 

USM3D viscous (SA) 



Boom3 VS3 Pressure Contours  

•  Surface pressures and symmetry plane flow field pressures 
computed by USM3D with laminar boundary layers 

•  Mach 1.6, α = 3.1° 
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Boom3 VS3 Experiment / CFD Comparisons 
at Various Off-Track Angles 
•  Best exp./CFD agreement at 15° off-track angle, though all predictions capture front 

ramp and main expansion fairly well 
•  Nose shock strength overpredicted by USM3D at φ = 0°, but this diminishes to no 

shock by φ = 45°, even though experimental data still show it 
•  Experimental shocks  

somewhat washed out by  
spatial averaging, CFD  
tends to show more detail,  
especially at φ = 0° 

•  Issues with experimental  
& CFD data are still  
being investigated… 

19 (SA: Spalart-Allmaras turbulence model) 
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9x7 WT, 14” aft rail  h/L = 3.87 (61”), α = 3.0° 
USM3D viscous (laminar)  h/L = 3.81 (60”), α = 3.1° 
USM3D viscous (SA)  h/L = 3.81 (60”), α = 3.1° 



Performance Model Surface Pressure Contours  

•  Surface pressures and symmetry plane flow field pressures 
computed by USM3D with SA turbulent model 

•  Mach 1.6, α = 3.4° 
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Performance Model 
Experiment / CFD 
Comparisons at Various 
Off-Track Angles 

•  Exp.: Performance model with 
tailored dummy sting 
CFD: Performance model with  
sting can 

–  Shocks after main expansion not 
expected to match 

•  CFD captures general trends of 
front ramp and main expansion, but 
exp. data have many more small 
shocks 

–  These small shocks not seen in Boom 
model data 

–  Forebody contours on Performance 
model are smooth, not sure what is 
causing the shocks 

•  Issues with experimental & CFD 
data are still being investigated… 
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9x7 WT, 14” aft rail  h/L = 1.43 (62”), α = 3.4° 
USM3D viscous (SA)  h/L = 1.39 (60”), α = 3.4° 



Performance Model Sting Options 

22 Image courtesy of The Boeing Company  

•  Model originally run with sting can 
–  Extends circular shape of aft body about 6” 
–  Has cavity and aft-facing step down to sting diameter 

•  Tailored dummy sting (covers) made during Phase II  
–  Used in place of sting can 
–  Continues aft-body shape about 17” behind model 
–  Intended to move effect of cross-section change further  

aft for cleaner aft signature 
–  Only for boom signatures, not force data 

since balance is “fouled” 



Conclusions 

•  Wind tunnel tests were conducted and CFD predictions 
were made in support of N+2 NRA studies 

•  Spatial-averaging test technique yielded good 
repeatability of model signatures—removed distortions 
due to different locations of models relative to rail 

•  14-in. “RF1” rail data matched CFD fairly well, 2-in. rail 
data required correction for reflection factor 

•  Inviscid CFD flow solvers generally overpredicted shock 
strengths, inclusion of boundary layer effects in viscous 
solvers gave better results 

•  Validation of CFD predictions with test data in these  
N+2 studies has significantly advanced the state of 
the art in low-boom aircraft design and test, and gives 
confidence in being able to design for low boom 
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